Properties

Label 703.10
Modulus $703$
Conductor $703$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(703, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([17,12]))
 
pari: [g,chi] = znchar(Mod(10,703))
 

Basic properties

Modulus: \(703\)
Conductor: \(703\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 703.ck

\(\chi_{703}(10,\cdot)\) \(\chi_{703}(174,\cdot)\) \(\chi_{703}(211,\cdot)\) \(\chi_{703}(470,\cdot)\) \(\chi_{703}(528,\cdot)\) \(\chi_{703}(602,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.36077123658233831722523486199489682113859.2

Values on generators

\((667,39)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 703 }(10, a) \) \(-1\)\(1\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 703 }(10,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 703 }(10,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 703 }(10,·),\chi_{ 703 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 703 }(10,·)) \;\) at \(\; a,b = \) e.g. 1,2