sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(703, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([17,12]))
pari:[g,chi] = znchar(Mod(10,703))
Modulus: | 703 | |
Conductor: | 703 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 18 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ703(10,⋅)
χ703(174,⋅)
χ703(211,⋅)
χ703(470,⋅)
χ703(528,⋅)
χ703(602,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(667,39) → (e(1817),e(32))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ703(10,a) |
−1 | 1 | e(1811) | e(1811) | e(92) | e(94) | e(92) | 1 | e(65) | e(92) | e(181) | e(31) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)