Properties

Label 704.393
Modulus $704$
Conductor $352$
Order $40$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,12]))
 
pari: [g,chi] = znchar(Mod(393,704))
 

Basic properties

Modulus: \(704\)
Conductor: \(352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{352}(349,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 704.bi

\(\chi_{704}(41,\cdot)\) \(\chi_{704}(57,\cdot)\) \(\chi_{704}(73,\cdot)\) \(\chi_{704}(105,\cdot)\) \(\chi_{704}(217,\cdot)\) \(\chi_{704}(233,\cdot)\) \(\chi_{704}(249,\cdot)\) \(\chi_{704}(281,\cdot)\) \(\chi_{704}(393,\cdot)\) \(\chi_{704}(409,\cdot)\) \(\chi_{704}(425,\cdot)\) \(\chi_{704}(457,\cdot)\) \(\chi_{704}(569,\cdot)\) \(\chi_{704}(585,\cdot)\) \(\chi_{704}(601,\cdot)\) \(\chi_{704}(633,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.0.1411841662908675517629776705295515492024702234241930698046194396081616318012166504448.1

Values on generators

\((639,133,321)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 704 }(393, a) \) \(-1\)\(1\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{23}{40}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{3}{8}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 704 }(393,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 704 }(393,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 704 }(393,·),\chi_{ 704 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 704 }(393,·)) \;\) at \(\; a,b = \) e.g. 1,2