sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([0,15,12]))
pari:[g,chi] = znchar(Mod(393,704))
χ704(41,⋅)
χ704(57,⋅)
χ704(73,⋅)
χ704(105,⋅)
χ704(217,⋅)
χ704(233,⋅)
χ704(249,⋅)
χ704(281,⋅)
χ704(393,⋅)
χ704(409,⋅)
χ704(425,⋅)
χ704(457,⋅)
χ704(569,⋅)
χ704(585,⋅)
χ704(601,⋅)
χ704(633,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(639,133,321) → (1,e(83),e(103))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ704(393,a) |
−1 | 1 | e(4021) | e(4023) | e(2017) | e(201) | e(4037) | e(101) | e(51) | e(4021) | e(83) | i |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)