Properties

Label 71.45
Modulus 7171
Conductor 7171
Order 77
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(71, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([2]))
 
pari: [g,chi] = znchar(Mod(45,71))
 

Basic properties

Modulus: 7171
Conductor: 7171
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 71.d

χ71(20,)\chi_{71}(20,\cdot) χ71(30,)\chi_{71}(30,\cdot) χ71(32,)\chi_{71}(32,\cdot) χ71(37,)\chi_{71}(37,\cdot) χ71(45,)\chi_{71}(45,\cdot) χ71(48,)\chi_{71}(48,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.128100283921.1

Values on generators

77e(17)e\left(\frac{1}{7}\right)

First values

aa 1-111223344556677889910101111
χ71(45,a) \chi_{ 71 }(45, a) 1111e(67)e\left(\frac{6}{7}\right)e(57)e\left(\frac{5}{7}\right)e(57)e\left(\frac{5}{7}\right)11e(47)e\left(\frac{4}{7}\right)e(17)e\left(\frac{1}{7}\right)e(47)e\left(\frac{4}{7}\right)e(37)e\left(\frac{3}{7}\right)e(67)e\left(\frac{6}{7}\right)e(37)e\left(\frac{3}{7}\right)
sage: chi.jacobi_sum(n)
 
χ71(45,a)   \chi_{ 71 }(45,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ71(45,))   \tau_{ a }( \chi_{ 71 }(45,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ71(45,),χ71(n,))   J(\chi_{ 71 }(45,·),\chi_{ 71 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ71(45,))  K(a,b,\chi_{ 71 }(45,·)) \; at   a,b=\; a,b = e.g. 1,2