Properties

Label 720.11
Modulus 720720
Conductor 144144
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,2,0]))
 
pari: [g,chi] = znchar(Mod(11,720))
 

Basic properties

Modulus: 720720
Conductor: 144144
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ144(11,)\chi_{144}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 720.cf

χ720(11,)\chi_{720}(11,\cdot) χ720(131,)\chi_{720}(131,\cdot) χ720(371,)\chi_{720}(371,\cdot) χ720(491,)\chi_{720}(491,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.3327916660110655488.1

Values on generators

(271,181,641,577)(271,181,641,577)(1,i,e(16),1)(-1,i,e\left(\frac{1}{6}\right),1)

First values

aa 1-11177111113131717191923232929313137374141
χ720(11,a) \chi_{ 720 }(11, a) 1111e(23)e\left(\frac{2}{3}\right)e(1112)e\left(\frac{11}{12}\right)e(112)e\left(\frac{1}{12}\right)1-1iie(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)iie(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ720(11,a)   \chi_{ 720 }(11,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ720(11,))   \tau_{ a }( \chi_{ 720 }(11,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ720(11,),χ720(n,))   J(\chi_{ 720 }(11,·),\chi_{ 720 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ720(11,))  K(a,b,\chi_{ 720 }(11,·)) \; at   a,b=\; a,b = e.g. 1,2