Properties

Label 720.181
Modulus 720720
Conductor 1616
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0,0]))
 
pari: [g,chi] = znchar(Mod(181,720))
 

Basic properties

Modulus: 720720
Conductor: 1616
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ16(5,)\chi_{16}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 720.t

χ720(181,)\chi_{720}(181,\cdot) χ720(541,)\chi_{720}(541,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ16)+\Q(\zeta_{16})^+

Values on generators

(271,181,641,577)(271,181,641,577)(1,i,1,1)(1,i,1,1)

First values

aa 1-11177111113131717191923232929313137374141
χ720(181,a) \chi_{ 720 }(181, a) 11111-1iii-i11i-i1-1i-i11ii1-1
sage: chi.jacobi_sum(n)
 
χ720(181,a)   \chi_{ 720 }(181,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ720(181,))   \tau_{ a }( \chi_{ 720 }(181,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ720(181,),χ720(n,))   J(\chi_{ 720 }(181,·),\chi_{ 720 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ720(181,))  K(a,b,\chi_{ 720 }(181,·)) \; at   a,b=\; a,b = e.g. 1,2