Properties

Label 720.23
Modulus 720720
Conductor 360360
Order 1212
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,10,9]))
 
pari: [g,chi] = znchar(Mod(23,720))
 

Basic properties

Modulus: 720720
Conductor: 360360
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ360(203,)\chi_{360}(203,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 720.cv

χ720(23,)\chi_{720}(23,\cdot) χ720(167,)\chi_{720}(167,\cdot) χ720(263,)\chi_{720}(263,\cdot) χ720(407,)\chi_{720}(407,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.198359290368000000000.1

Values on generators

(271,181,641,577)(271,181,641,577)(1,1,e(56),i)(-1,-1,e\left(\frac{5}{6}\right),-i)

First values

aa 1-11177111113131717191923232929313137374141
χ720(23,a) \chi_{ 720 }(23, a) 1-111e(712)e\left(\frac{7}{12}\right)e(56)e\left(\frac{5}{6}\right)e(512)e\left(\frac{5}{12}\right)ii1-1e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)iie(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ720(23,a)   \chi_{ 720 }(23,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ720(23,))   \tau_{ a }( \chi_{ 720 }(23,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ720(23,),χ720(n,))   J(\chi_{ 720 }(23,·),\chi_{ 720 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ720(23,))  K(a,b,\chi_{ 720 }(23,·)) \; at   a,b=\; a,b = e.g. 1,2