Properties

Label 720.89
Modulus 720720
Conductor 120120
Order 22
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1,1]))
 
pari: [g,chi] = znchar(Mod(89,720))
 

Basic properties

Modulus: 720720
Conductor: 120120
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ120(29,)\chi_{120}(29,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 720.i

χ720(89,)\chi_{720}(89,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(30)\Q(\sqrt{-30})

Values on generators

(271,181,641,577)(271,181,641,577)(1,1,1,1)(1,-1,-1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ720(89,a) \chi_{ 720 }(89, a) 1-1111-11111111-1111111111-1
sage: chi.jacobi_sum(n)
 
χ720(89,a)   \chi_{ 720 }(89,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ720(89,))   \tau_{ a }( \chi_{ 720 }(89,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ720(89,),χ720(n,))   J(\chi_{ 720 }(89,·),\chi_{ 720 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ720(89,))  K(a,b,\chi_{ 720 }(89,·)) \; at   a,b=\; a,b = e.g. 1,2