Properties

Label 7225.4493
Modulus 72257225
Conductor 8585
Order 1616
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,5]))
 
pari: [g,chi] = znchar(Mod(4493,7225))
 

Basic properties

Modulus: 72257225
Conductor: 8585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ85(73,)\chi_{85}(73,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7225.s

χ7225(643,)\chi_{7225}(643,\cdot) χ7225(907,)\chi_{7225}(907,\cdot) χ7225(2443,)\chi_{7225}(2443,\cdot) χ7225(3682,)\chi_{7225}(3682,\cdot) χ7225(3832,)\chi_{7225}(3832,\cdot) χ7225(4493,)\chi_{7225}(4493,\cdot) χ7225(6293,)\chi_{7225}(6293,\cdot) χ7225(6607,)\chi_{7225}(6607,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.698833752810013621337890625.2

Values on generators

(2602,2026)(2602,2026)(i,e(516))(-i,e\left(\frac{5}{16}\right))

First values

aa 1-11122334466778899111112121313
χ7225(4493,a) \chi_{ 7225 }(4493, a) 1111e(18)e\left(\frac{1}{8}\right)e(916)e\left(\frac{9}{16}\right)iie(1116)e\left(\frac{11}{16}\right)e(316)e\left(\frac{3}{16}\right)e(38)e\left(\frac{3}{8}\right)e(18)e\left(\frac{1}{8}\right)e(316)e\left(\frac{3}{16}\right)e(1316)e\left(\frac{13}{16}\right)1-1
sage: chi.jacobi_sum(n)
 
χ7225(4493,a)   \chi_{ 7225 }(4493,a) \; at   a=\;a = e.g. 2