Properties

Label 7225.4493
Modulus $7225$
Conductor $85$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,5]))
 
pari: [g,chi] = znchar(Mod(4493,7225))
 

Basic properties

Modulus: \(7225\)
Conductor: \(85\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{85}(73,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7225.s

\(\chi_{7225}(643,\cdot)\) \(\chi_{7225}(907,\cdot)\) \(\chi_{7225}(2443,\cdot)\) \(\chi_{7225}(3682,\cdot)\) \(\chi_{7225}(3832,\cdot)\) \(\chi_{7225}(4493,\cdot)\) \(\chi_{7225}(6293,\cdot)\) \(\chi_{7225}(6607,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.698833752810013621337890625.2

Values on generators

\((2602,2026)\) → \((-i,e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 7225 }(4493, a) \) \(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(i\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7225 }(4493,a) \;\) at \(\;a = \) e.g. 2