Properties

Label 7225.m
Modulus 72257225
Conductor 1717
Order 88
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1001,7225))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 72257225
Conductor: 1717
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 17.d
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: Q(ζ17)+\Q(\zeta_{17})^+

Characters in Galois orbit

Character 1-1 11 22 33 44 66 77 88 99 1111 1212 1313
χ7225(1001,)\chi_{7225}(1001,\cdot) 11 11 ii e(38)e\left(\frac{3}{8}\right) 1-1 e(58)e\left(\frac{5}{8}\right) e(18)e\left(\frac{1}{8}\right) i-i i-i e(58)e\left(\frac{5}{8}\right) e(78)e\left(\frac{7}{8}\right) 1-1
χ7225(4201,)\chi_{7225}(4201,\cdot) 11 11 ii e(78)e\left(\frac{7}{8}\right) 1-1 e(18)e\left(\frac{1}{8}\right) e(58)e\left(\frac{5}{8}\right) i-i i-i e(18)e\left(\frac{1}{8}\right) e(38)e\left(\frac{3}{8}\right) 1-1
χ7225(5601,)\chi_{7225}(5601,\cdot) 11 11 i-i e(58)e\left(\frac{5}{8}\right) 1-1 e(38)e\left(\frac{3}{8}\right) e(78)e\left(\frac{7}{8}\right) ii ii e(38)e\left(\frac{3}{8}\right) e(18)e\left(\frac{1}{8}\right) 1-1
χ7225(6826,)\chi_{7225}(6826,\cdot) 11 11 i-i e(18)e\left(\frac{1}{8}\right) 1-1 e(78)e\left(\frac{7}{8}\right) e(38)e\left(\frac{3}{8}\right) ii ii e(78)e\left(\frac{7}{8}\right) e(58)e\left(\frac{5}{8}\right) 1-1