Properties

Label 725.614
Modulus 725725
Conductor 725725
Order 7070
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,55]))
 
pari: [g,chi] = znchar(Mod(614,725))
 

Basic properties

Modulus: 725725
Conductor: 725725
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7070
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 725.bh

χ725(4,)\chi_{725}(4,\cdot) χ725(9,)\chi_{725}(9,\cdot) χ725(34,)\chi_{725}(34,\cdot) χ725(64,)\chi_{725}(64,\cdot) χ725(109,)\chi_{725}(109,\cdot) χ725(129,)\chi_{725}(129,\cdot) χ725(154,)\chi_{725}(154,\cdot) χ725(179,)\chi_{725}(179,\cdot) χ725(209,)\chi_{725}(209,\cdot) χ725(254,)\chi_{725}(254,\cdot) χ725(294,)\chi_{725}(294,\cdot) χ725(354,)\chi_{725}(354,\cdot) χ725(419,)\chi_{725}(419,\cdot) χ725(439,)\chi_{725}(439,\cdot) χ725(444,)\chi_{725}(444,\cdot) χ725(469,)\chi_{725}(469,\cdot) χ725(544,)\chi_{725}(544,\cdot) χ725(564,)\chi_{725}(564,\cdot) χ725(584,)\chi_{725}(584,\cdot) χ725(589,)\chi_{725}(589,\cdot) χ725(614,)\chi_{725}(614,\cdot) χ725(644,)\chi_{725}(644,\cdot) χ725(689,)\chi_{725}(689,\cdot) χ725(709,)\chi_{725}(709,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ35)\Q(\zeta_{35})
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

(552,176)(552,176)(e(310),e(1114))(e\left(\frac{3}{10}\right),e\left(\frac{11}{14}\right))

First values

aa 1-11122334466778899111112121313
χ725(614,a) \chi_{ 725 }(614, a) 1111e(335)e\left(\frac{3}{35}\right)e(135)e\left(\frac{1}{35}\right)e(635)e\left(\frac{6}{35}\right)e(435)e\left(\frac{4}{35}\right)e(1314)e\left(\frac{13}{14}\right)e(935)e\left(\frac{9}{35}\right)e(235)e\left(\frac{2}{35}\right)e(3170)e\left(\frac{31}{70}\right)e(15)e\left(\frac{1}{5}\right)e(5970)e\left(\frac{59}{70}\right)
sage: chi.jacobi_sum(n)
 
χ725(614,a)   \chi_{ 725 }(614,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ725(614,))   \tau_{ a }( \chi_{ 725 }(614,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ725(614,),χ725(n,))   J(\chi_{ 725 }(614,·),\chi_{ 725 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ725(614,))  K(a,b,\chi_{ 725 }(614,·)) \; at   a,b=\; a,b = e.g. 1,2