Properties

Label 729.325
Modulus 729729
Conductor 2727
Order 99
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([14]))
 
pari: [g,chi] = znchar(Mod(325,729))
 

Basic properties

Modulus: 729729
Conductor: 2727
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 99
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ27(22,)\chi_{27}(22,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.e

χ729(82,)\chi_{729}(82,\cdot) χ729(163,)\chi_{729}(163,\cdot) χ729(325,)\chi_{729}(325,\cdot) χ729(406,)\chi_{729}(406,\cdot) χ729(568,)\chi_{729}(568,\cdot) χ729(649,)\chi_{729}(649,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ27)+\Q(\zeta_{27})^+

Values on generators

22e(79)e\left(\frac{7}{9}\right)

First values

aa 1-111224455778810101111131314141616
χ729(325,a) \chi_{ 729 }(325, a) 1111e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)e(89)e\left(\frac{8}{9}\right)e(49)e\left(\frac{4}{9}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(19)e\left(\frac{1}{9}\right)e(29)e\left(\frac{2}{9}\right)e(29)e\left(\frac{2}{9}\right)e(19)e\left(\frac{1}{9}\right)
sage: chi.jacobi_sum(n)
 
χ729(325,a)   \chi_{ 729 }(325,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ729(325,))   \tau_{ a }( \chi_{ 729 }(325,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ729(325,),χ729(n,))   J(\chi_{ 729 }(325,·),\chi_{ 729 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ729(325,))  K(a,b,\chi_{ 729 }(325,·)) \; at   a,b=\; a,b = e.g. 1,2