Properties

Label 731025.1283
Modulus 731025731025
Conductor 731025731025
Order 1026010260
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(10260))
 
M = H._module
 
chi = DirichletCharacter(H, M([6650,1539,3750]))
 
pari: [g,chi] = znchar(Mod(1283,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 731025731025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1026010260
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.bvw

χ731025(2,)\chi_{731025}(2,\cdot) χ731025(128,)\chi_{731025}(128,\cdot) χ731025(497,)\chi_{731025}(497,\cdot) χ731025(1022,)\chi_{731025}(1022,\cdot) χ731025(1028,)\chi_{731025}(1028,\cdot) χ731025(1058,)\chi_{731025}(1058,\cdot) χ731025(1283,)\chi_{731025}(1283,\cdot) χ731025(1523,)\chi_{731025}(1523,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ10260)\Q(\zeta_{10260})
Fixed field: Number field defined by a degree 10260 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(3554),e(320),e(125342))(e\left(\frac{35}{54}\right),e\left(\frac{3}{20}\right),e\left(\frac{125}{342}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(1283,a) \chi_{ 731025 }(1283, a) 1-111e(167910260)e\left(\frac{1679}{10260}\right)e(16795130)e\left(\frac{1679}{5130}\right)e(19392052)e\left(\frac{1939}{2052}\right)e(16793420)e\left(\frac{1679}{3420}\right)e(5475130)e\left(\frac{547}{5130}\right)e(291110260)e\left(\frac{2911}{10260}\right)e(5575130)e\left(\frac{557}{5130}\right)e(16792565)e\left(\frac{1679}{2565}\right)e(10731140)e\left(\frac{1073}{1140}\right)e(277310260)e\left(\frac{2773}{10260}\right)
sage: chi.jacobi_sum(n)
 
χ731025(1283,a)   \chi_{ 731025 }(1283,a) \; at   a=\;a = e.g. 2