from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(731025, base_ring=CyclotomicField(5130))
M = H._module
chi = DirichletCharacter(H, M([760,2052,120]))
pari: [g,chi] = znchar(Mod(256,731025))
χ731025(16,⋅)
χ731025(256,⋅)
χ731025(481,⋅)
χ731025(511,⋅)
χ731025(1411,⋅)
χ731025(2056,⋅)
χ731025(2821,⋅)
χ731025(3046,⋅)
χ731025(4621,⋅)
χ731025(5146,⋅)
χ731025(5386,⋅)
χ731025(5611,⋅)
χ731025(5641,⋅)
χ731025(6541,⋅)
χ731025(7186,⋅)
χ731025(7711,⋅)
χ731025(8206,⋅)
χ731025(9106,⋅)
χ731025(10516,⋅)
χ731025(10741,⋅)
χ731025(10771,⋅)
χ731025(11671,⋅)
χ731025(12316,⋅)
χ731025(12841,⋅)
χ731025(13081,⋅)
χ731025(13306,⋅)
χ731025(13336,⋅)
χ731025(14236,⋅)
χ731025(14881,⋅)
χ731025(15406,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(279776,321652,129601) → (e(274),e(52),e(1714))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ731025(256,a) |
1 | 1 | e(25651466) | e(2565367) | e(513451) | e(855611) | e(25651826) | e(25651234) | e(25651156) | e(2565734) | e(285107) | e(2565727) |