Properties

Label 731025.256
Modulus 731025731025
Conductor 731025731025
Order 25652565
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(5130))
 
M = H._module
 
chi = DirichletCharacter(H, M([760,2052,120]))
 
pari: [g,chi] = znchar(Mod(256,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 731025731025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 25652565
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.bqa

χ731025(16,)\chi_{731025}(16,\cdot) χ731025(256,)\chi_{731025}(256,\cdot) χ731025(481,)\chi_{731025}(481,\cdot) χ731025(511,)\chi_{731025}(511,\cdot) χ731025(1411,)\chi_{731025}(1411,\cdot) χ731025(2056,)\chi_{731025}(2056,\cdot) χ731025(2821,)\chi_{731025}(2821,\cdot) χ731025(3046,)\chi_{731025}(3046,\cdot) χ731025(4621,)\chi_{731025}(4621,\cdot) χ731025(5146,)\chi_{731025}(5146,\cdot) χ731025(5386,)\chi_{731025}(5386,\cdot) χ731025(5611,)\chi_{731025}(5611,\cdot) χ731025(5641,)\chi_{731025}(5641,\cdot) χ731025(6541,)\chi_{731025}(6541,\cdot) χ731025(7186,)\chi_{731025}(7186,\cdot) χ731025(7711,)\chi_{731025}(7711,\cdot) χ731025(8206,)\chi_{731025}(8206,\cdot) χ731025(9106,)\chi_{731025}(9106,\cdot) χ731025(10516,)\chi_{731025}(10516,\cdot) χ731025(10741,)\chi_{731025}(10741,\cdot) χ731025(10771,)\chi_{731025}(10771,\cdot) χ731025(11671,)\chi_{731025}(11671,\cdot) χ731025(12316,)\chi_{731025}(12316,\cdot) χ731025(12841,)\chi_{731025}(12841,\cdot) χ731025(13081,)\chi_{731025}(13081,\cdot) χ731025(13306,)\chi_{731025}(13306,\cdot) χ731025(13336,)\chi_{731025}(13336,\cdot) χ731025(14236,)\chi_{731025}(14236,\cdot) χ731025(14881,)\chi_{731025}(14881,\cdot) χ731025(15406,)\chi_{731025}(15406,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ2565)\Q(\zeta_{2565})
Fixed field: Number field defined by a degree 2565 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(427),e(25),e(4171))(e\left(\frac{4}{27}\right),e\left(\frac{2}{5}\right),e\left(\frac{4}{171}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(256,a) \chi_{ 731025 }(256, a) 1111e(14662565)e\left(\frac{1466}{2565}\right)e(3672565)e\left(\frac{367}{2565}\right)e(451513)e\left(\frac{451}{513}\right)e(611855)e\left(\frac{611}{855}\right)e(18262565)e\left(\frac{1826}{2565}\right)e(12342565)e\left(\frac{1234}{2565}\right)e(11562565)e\left(\frac{1156}{2565}\right)e(7342565)e\left(\frac{734}{2565}\right)e(107285)e\left(\frac{107}{285}\right)e(7272565)e\left(\frac{727}{2565}\right)
sage: chi.jacobi_sum(n)
 
χ731025(256,a)   \chi_{ 731025 }(256,a) \; at   a=\;a = e.g. 2