Properties

Label 731025.321652
Modulus 731025731025
Conductor 2525
Order 2020
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0]))
 
pari: [g,chi] = znchar(Mod(321652,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25(2,)\chi_{25}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.go

χ731025(29242,)\chi_{731025}(29242,\cdot) χ731025(58483,)\chi_{731025}(58483,\cdot) χ731025(175447,)\chi_{731025}(175447,\cdot) χ731025(204688,)\chi_{731025}(204688,\cdot) χ731025(321652,)\chi_{731025}(321652,\cdot) χ731025(497098,)\chi_{731025}(497098,\cdot) χ731025(614062,)\chi_{731025}(614062,\cdot) χ731025(643303,)\chi_{731025}(643303,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(279776,321652,129601)(279776,321652,129601)(1,e(120),1)(1,e\left(\frac{1}{20}\right),1)

First values

aa 1-11122447788111113131414161617172222
χ731025(321652,a) \chi_{ 731025 }(321652, a) 1-111e(120)e\left(\frac{1}{20}\right)e(110)e\left(\frac{1}{10}\right)iie(320)e\left(\frac{3}{20}\right)e(45)e\left(\frac{4}{5}\right)e(1920)e\left(\frac{19}{20}\right)e(310)e\left(\frac{3}{10}\right)e(15)e\left(\frac{1}{5}\right)e(1320)e\left(\frac{13}{20}\right)e(1720)e\left(\frac{17}{20}\right)
sage: chi.jacobi_sum(n)
 
χ731025(321652,a)   \chi_{ 731025 }(321652,a) \; at   a=\;a = e.g. 2