Properties

Label 731025.371
Modulus 731025731025
Conductor 731025731025
Order 51305130
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(5130))
 
M = H._module
 
chi = DirichletCharacter(H, M([665,3078,3495]))
 
pari: [g,chi] = znchar(Mod(371,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 731025731025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 51305130
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.bsz

χ731025(41,)\chi_{731025}(41,\cdot) χ731025(281,)\chi_{731025}(281,\cdot) χ731025(356,)\chi_{731025}(356,\cdot) χ731025(371,)\chi_{731025}(371,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ2565)\Q(\zeta_{2565})
Fixed field: Number field defined by a degree 5130 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(754),e(35),e(233342))(e\left(\frac{7}{54}\right),e\left(\frac{3}{5}\right),e\left(\frac{233}{342}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(371,a) \chi_{ 731025 }(371, a) 1111e(10542565)e\left(\frac{1054}{2565}\right)e(21082565)e\left(\frac{2108}{2565}\right)e(137513)e\left(\frac{137}{513}\right)e(199855)e\left(\frac{199}{855}\right)e(39835130)e\left(\frac{3983}{5130}\right)e(29775130)e\left(\frac{2977}{5130}\right)e(17392565)e\left(\frac{1739}{2565}\right)e(16512565)e\left(\frac{1651}{2565}\right)e(831710)e\left(\frac{83}{1710}\right)e(9615130)e\left(\frac{961}{5130}\right)
sage: chi.jacobi_sum(n)
 
χ731025(371,a)   \chi_{ 731025 }(371,a) \; at   a=\;a = e.g. 2