Properties

Label 731025.59
Modulus 731025731025
Conductor 731025731025
Order 51305130
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(5130))
 
M = H._module
 
chi = DirichletCharacter(H, M([3895,3591,2715]))
 
pari: [g,chi] = znchar(Mod(59,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 731025731025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 51305130
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.bte

χ731025(14,)\chi_{731025}(14,\cdot) χ731025(59,)\chi_{731025}(59,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ2565)\Q(\zeta_{2565})
Fixed field: Number field defined by a degree 5130 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(4154),e(710),e(181342))(e\left(\frac{41}{54}\right),e\left(\frac{7}{10}\right),e\left(\frac{181}{342}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(59,a) \chi_{ 731025 }(59, a) 1111e(50715130)e\left(\frac{5071}{5130}\right)e(25062565)e\left(\frac{2506}{2565}\right)e(351026)e\left(\frac{35}{1026}\right)e(16511710)e\left(\frac{1651}{1710}\right)e(2715130)e\left(\frac{271}{5130}\right)e(12672565)e\left(\frac{1267}{2565}\right)e(582565)e\left(\frac{58}{2565}\right)e(24472565)e\left(\frac{2447}{2565}\right)e(653855)e\left(\frac{653}{855}\right)e(1062565)e\left(\frac{106}{2565}\right)
sage: chi.jacobi_sum(n)
 
χ731025(59,a)   \chi_{ 731025 }(59,a) \; at   a=\;a = e.g. 2