Properties

Label 735.29
Modulus 735735
Conductor 735735
Order 1414
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,7,6]))
 
Copy content pari:[g,chi] = znchar(Mod(29,735))
 

Basic properties

Modulus: 735735
Conductor: 735735
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1414
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 735.bb

χ735(29,)\chi_{735}(29,\cdot) χ735(134,)\chi_{735}(134,\cdot) χ735(239,)\chi_{735}(239,\cdot) χ735(449,)\chi_{735}(449,\cdot) χ735(554,)\chi_{735}(554,\cdot) χ735(659,)\chi_{735}(659,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

(491,442,346)(491,442,346)(1,1,e(37))(-1,-1,e\left(\frac{3}{7}\right))

First values

aa 1-1112244881111131316161717191922222323
χ735(29,a) \chi_{ 735 }(29, a) 1-111e(17)e\left(\frac{1}{7}\right)e(27)e\left(\frac{2}{7}\right)e(37)e\left(\frac{3}{7}\right)e(914)e\left(\frac{9}{14}\right)e(914)e\left(\frac{9}{14}\right)e(47)e\left(\frac{4}{7}\right)e(57)e\left(\frac{5}{7}\right)11e(1114)e\left(\frac{11}{14}\right)e(27)e\left(\frac{2}{7}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ735(29,a)   \chi_{ 735 }(29,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ735(29,))   \tau_{ a }( \chi_{ 735 }(29,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ735(29,),χ735(n,))   J(\chi_{ 735 }(29,·),\chi_{ 735 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ735(29,))  K(a,b,\chi_{ 735 }(29,·)) \; at   a,b=\; a,b = e.g. 1,2