sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,6]))
pari:[g,chi] = znchar(Mod(29,735))
Modulus: | 735 | |
Conductor: | 735 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 14 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ735(29,⋅)
χ735(134,⋅)
χ735(239,⋅)
χ735(449,⋅)
χ735(554,⋅)
χ735(659,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(491,442,346) → (−1,−1,e(73))
a |
−1 | 1 | 2 | 4 | 8 | 11 | 13 | 16 | 17 | 19 | 22 | 23 |
χ735(29,a) |
−1 | 1 | e(71) | e(72) | e(73) | e(149) | e(149) | e(74) | e(75) | 1 | e(1411) | e(72) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)