from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,7,24]))
pari: [g,chi] = znchar(Mod(302,735))
Basic properties
Modulus: | \(735\) | |
Conductor: | \(735\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 735.bj
\(\chi_{735}(8,\cdot)\) \(\chi_{735}(92,\cdot)\) \(\chi_{735}(113,\cdot)\) \(\chi_{735}(218,\cdot)\) \(\chi_{735}(302,\cdot)\) \(\chi_{735}(323,\cdot)\) \(\chi_{735}(407,\cdot)\) \(\chi_{735}(428,\cdot)\) \(\chi_{735}(512,\cdot)\) \(\chi_{735}(533,\cdot)\) \(\chi_{735}(617,\cdot)\) \(\chi_{735}(722,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | Number field defined by a degree 28 polynomial |
Values on generators
\((491,442,346)\) → \((-1,i,e\left(\frac{6}{7}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 735 }(302, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(-1\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)