Properties

Label 735.302
Modulus $735$
Conductor $735$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,7,24]))
 
pari: [g,chi] = znchar(Mod(302,735))
 

Basic properties

Modulus: \(735\)
Conductor: \(735\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 735.bj

\(\chi_{735}(8,\cdot)\) \(\chi_{735}(92,\cdot)\) \(\chi_{735}(113,\cdot)\) \(\chi_{735}(218,\cdot)\) \(\chi_{735}(302,\cdot)\) \(\chi_{735}(323,\cdot)\) \(\chi_{735}(407,\cdot)\) \(\chi_{735}(428,\cdot)\) \(\chi_{735}(512,\cdot)\) \(\chi_{735}(533,\cdot)\) \(\chi_{735}(617,\cdot)\) \(\chi_{735}(722,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((491,442,346)\) → \((-1,i,e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 735 }(302, a) \) \(1\)\(1\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{28}\right)\)\(-1\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{23}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 735 }(302,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 735 }(302,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 735 }(302,·),\chi_{ 735 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 735 }(302,·)) \;\) at \(\; a,b = \) e.g. 1,2