sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,63,20]))
pari:[g,chi] = znchar(Mod(53,735))
Modulus: | 735 | |
Conductor: | 735 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 84 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ735(2,⋅)
χ735(23,⋅)
χ735(32,⋅)
χ735(53,⋅)
χ735(107,⋅)
χ735(137,⋅)
χ735(158,⋅)
χ735(212,⋅)
χ735(233,⋅)
χ735(242,⋅)
χ735(317,⋅)
χ735(338,⋅)
χ735(347,⋅)
χ735(368,⋅)
χ735(443,⋅)
χ735(452,⋅)
χ735(473,⋅)
χ735(527,⋅)
χ735(548,⋅)
χ735(578,⋅)
χ735(632,⋅)
χ735(653,⋅)
χ735(662,⋅)
χ735(683,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(491,442,346) → (−1,−i,e(215))
a |
−1 | 1 | 2 | 4 | 8 | 11 | 13 | 16 | 17 | 19 | 22 | 23 |
χ735(53,a) |
1 | 1 | e(8437) | e(4237) | e(289) | e(421) | e(283) | e(2116) | e(8417) | e(65) | e(2813) | e(8467) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)