Properties

Label 735.53
Modulus $735$
Conductor $735$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,63,20]))
 
pari: [g,chi] = znchar(Mod(53,735))
 

Basic properties

Modulus: \(735\)
Conductor: \(735\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 735.bt

\(\chi_{735}(2,\cdot)\) \(\chi_{735}(23,\cdot)\) \(\chi_{735}(32,\cdot)\) \(\chi_{735}(53,\cdot)\) \(\chi_{735}(107,\cdot)\) \(\chi_{735}(137,\cdot)\) \(\chi_{735}(158,\cdot)\) \(\chi_{735}(212,\cdot)\) \(\chi_{735}(233,\cdot)\) \(\chi_{735}(242,\cdot)\) \(\chi_{735}(317,\cdot)\) \(\chi_{735}(338,\cdot)\) \(\chi_{735}(347,\cdot)\) \(\chi_{735}(368,\cdot)\) \(\chi_{735}(443,\cdot)\) \(\chi_{735}(452,\cdot)\) \(\chi_{735}(473,\cdot)\) \(\chi_{735}(527,\cdot)\) \(\chi_{735}(548,\cdot)\) \(\chi_{735}(578,\cdot)\) \(\chi_{735}(632,\cdot)\) \(\chi_{735}(653,\cdot)\) \(\chi_{735}(662,\cdot)\) \(\chi_{735}(683,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((491,442,346)\) → \((-1,-i,e\left(\frac{5}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 735 }(53, a) \) \(1\)\(1\)\(e\left(\frac{37}{84}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{17}{84}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{67}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 735 }(53,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 735 }(53,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 735 }(53,·),\chi_{ 735 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 735 }(53,·)) \;\) at \(\; a,b = \) e.g. 1,2