Properties

Label 736.123
Modulus $736$
Conductor $736$
Order $88$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(88))
 
M = H._module
 
chi = DirichletCharacter(H, M([44,11,24]))
 
pari: [g,chi] = znchar(Mod(123,736))
 

Basic properties

Modulus: \(736\)
Conductor: \(736\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(88\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 736.bd

\(\chi_{736}(3,\cdot)\) \(\chi_{736}(27,\cdot)\) \(\chi_{736}(35,\cdot)\) \(\chi_{736}(59,\cdot)\) \(\chi_{736}(75,\cdot)\) \(\chi_{736}(123,\cdot)\) \(\chi_{736}(131,\cdot)\) \(\chi_{736}(147,\cdot)\) \(\chi_{736}(163,\cdot)\) \(\chi_{736}(179,\cdot)\) \(\chi_{736}(187,\cdot)\) \(\chi_{736}(211,\cdot)\) \(\chi_{736}(219,\cdot)\) \(\chi_{736}(243,\cdot)\) \(\chi_{736}(259,\cdot)\) \(\chi_{736}(307,\cdot)\) \(\chi_{736}(315,\cdot)\) \(\chi_{736}(331,\cdot)\) \(\chi_{736}(347,\cdot)\) \(\chi_{736}(363,\cdot)\) \(\chi_{736}(371,\cdot)\) \(\chi_{736}(395,\cdot)\) \(\chi_{736}(403,\cdot)\) \(\chi_{736}(427,\cdot)\) \(\chi_{736}(443,\cdot)\) \(\chi_{736}(491,\cdot)\) \(\chi_{736}(499,\cdot)\) \(\chi_{736}(515,\cdot)\) \(\chi_{736}(531,\cdot)\) \(\chi_{736}(547,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{88})$
Fixed field: Number field defined by a degree 88 polynomial

Values on generators

\((415,645,97)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{3}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 736 }(123, a) \) \(-1\)\(1\)\(e\left(\frac{21}{88}\right)\)\(e\left(\frac{35}{88}\right)\)\(e\left(\frac{41}{44}\right)\)\(e\left(\frac{21}{44}\right)\)\(e\left(\frac{51}{88}\right)\)\(e\left(\frac{61}{88}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{41}{88}\right)\)\(e\left(\frac{15}{88}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 736 }(123,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 736 }(123,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 736 }(123,·),\chi_{ 736 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 736 }(123,·)) \;\) at \(\; a,b = \) e.g. 1,2