Properties

Label 736.49
Modulus 736736
Conductor 184184
Order 2222
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,11,16]))
 
Copy content pari:[g,chi] = znchar(Mod(49,736))
 

Basic properties

Modulus: 736736
Conductor: 184184
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 2222
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ184(141,)\chi_{184}(141,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 736.x

χ736(49,)\chi_{736}(49,\cdot) χ736(81,)\chi_{736}(81,\cdot) χ736(177,)\chi_{736}(177,\cdot) χ736(209,)\chi_{736}(209,\cdot) χ736(305,)\chi_{736}(305,\cdot) χ736(561,)\chi_{736}(561,\cdot) χ736(593,)\chi_{736}(593,\cdot) χ736(625,)\chi_{736}(625,\cdot) χ736(657,)\chi_{736}(657,\cdot) χ736(721,)\chi_{736}(721,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: 22.22.14741666340843480753092741810452692992.1

Values on generators

(415,645,97)(415,645,97)(1,1,e(811))(1,-1,e\left(\frac{8}{11}\right))

First values

aa 1-11133557799111113131515171719192121
χ736(49,a) \chi_{ 736 }(49, a) 1111e(322)e\left(\frac{3}{22}\right)e(522)e\left(\frac{5}{22}\right)e(911)e\left(\frac{9}{11}\right)e(311)e\left(\frac{3}{11}\right)e(122)e\left(\frac{1}{22}\right)e(1522)e\left(\frac{15}{22}\right)e(411)e\left(\frac{4}{11}\right)e(111)e\left(\frac{1}{11}\right)e(922)e\left(\frac{9}{22}\right)e(2122)e\left(\frac{21}{22}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ736(49,a)   \chi_{ 736 }(49,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ736(49,))   \tau_{ a }( \chi_{ 736 }(49,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ736(49,),χ736(n,))   J(\chi_{ 736 }(49,·),\chi_{ 736 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ736(49,))  K(a,b,\chi_{ 736 }(49,·)) \; at   a,b=\; a,b = e.g. 1,2