Properties

Label 736.49
Modulus $736$
Conductor $184$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,16]))
 
pari: [g,chi] = znchar(Mod(49,736))
 

Basic properties

Modulus: \(736\)
Conductor: \(184\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{184}(141,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 736.x

\(\chi_{736}(49,\cdot)\) \(\chi_{736}(81,\cdot)\) \(\chi_{736}(177,\cdot)\) \(\chi_{736}(209,\cdot)\) \(\chi_{736}(305,\cdot)\) \(\chi_{736}(561,\cdot)\) \(\chi_{736}(593,\cdot)\) \(\chi_{736}(625,\cdot)\) \(\chi_{736}(657,\cdot)\) \(\chi_{736}(721,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.14741666340843480753092741810452692992.1

Values on generators

\((415,645,97)\) → \((1,-1,e\left(\frac{8}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 736 }(49, a) \) \(1\)\(1\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{21}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 736 }(49,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 736 }(49,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 736 }(49,·),\chi_{ 736 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 736 }(49,·)) \;\) at \(\; a,b = \) e.g. 1,2