sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(736, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,11,16]))
pari:[g,chi] = znchar(Mod(49,736))
χ736(49,⋅)
χ736(81,⋅)
χ736(177,⋅)
χ736(209,⋅)
χ736(305,⋅)
χ736(561,⋅)
χ736(593,⋅)
χ736(625,⋅)
χ736(657,⋅)
χ736(721,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(415,645,97) → (1,−1,e(118))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ736(49,a) |
1 | 1 | e(223) | e(225) | e(119) | e(113) | e(221) | e(2215) | e(114) | e(111) | e(229) | e(2221) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)