Properties

Label 740.199
Modulus 740740
Conductor 740740
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,11]))
 
pari: [g,chi] = znchar(Mod(199,740))
 

Basic properties

Modulus: 740740
Conductor: 740740
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 740.bo

χ740(119,)\chi_{740}(119,\cdot) χ740(199,)\chi_{740}(199,\cdot) χ740(319,)\chi_{740}(319,\cdot) χ740(399,)\chi_{740}(399,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.11386727793885466432000000.1

Values on generators

(371,297,261)(371,297,261)(1,1,e(1112))(-1,-1,e\left(\frac{11}{12}\right))

First values

aa 1-1113377991111131317171919212123232727
χ740(199,a) \chi_{ 740 }(199, a) 1111e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(712)e\left(\frac{7}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(712)e\left(\frac{7}{12}\right)e(16)e\left(\frac{1}{6}\right)i-i1-1
sage: chi.jacobi_sum(n)
 
χ740(199,a)   \chi_{ 740 }(199,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ740(199,))   \tau_{ a }( \chi_{ 740 }(199,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ740(199,),χ740(n,))   J(\chi_{ 740 }(199,·),\chi_{ 740 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ740(199,))  K(a,b,\chi_{ 740 }(199,·)) \; at   a,b=\; a,b = e.g. 1,2