Properties

Label 740.413
Modulus 740740
Conductor 185185
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,3]))
 
pari: [g,chi] = znchar(Mod(413,740))
 

Basic properties

Modulus: 740740
Conductor: 185185
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ185(43,)\chi_{185}(43,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 740.l

χ740(413,)\chi_{740}(413,\cdot) χ740(697,)\chi_{740}(697,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.6331625.1

Values on generators

(371,297,261)(371,297,261)(1,i,i)(1,-i,-i)

First values

aa 1-1113377991111131317171919212123232727
χ740(413,a) \chi_{ 740 }(413, a) 1111i-ii-i1-11-11-111i-i1-11-1ii
sage: chi.jacobi_sum(n)
 
χ740(413,a)   \chi_{ 740 }(413,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ740(413,))   \tau_{ a }( \chi_{ 740 }(413,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ740(413,),χ740(n,))   J(\chi_{ 740 }(413,·),\chi_{ 740 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ740(413,))  K(a,b,\chi_{ 740 }(413,·)) \; at   a,b=\; a,b = e.g. 1,2