from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,1]))
pari: [g,chi] = znchar(Mod(557,740))
Basic properties
Modulus: | \(740\) | |
Conductor: | \(185\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{185}(2,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 740.ch
\(\chi_{740}(13,\cdot)\) \(\chi_{740}(57,\cdot)\) \(\chi_{740}(93,\cdot)\) \(\chi_{740}(133,\cdot)\) \(\chi_{740}(153,\cdot)\) \(\chi_{740}(217,\cdot)\) \(\chi_{740}(237,\cdot)\) \(\chi_{740}(277,\cdot)\) \(\chi_{740}(313,\cdot)\) \(\chi_{740}(357,\cdot)\) \(\chi_{740}(553,\cdot)\) \(\chi_{740}(557,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.57444765302724909954814307473256133361395843470561362005770206451416015625.1 |
Values on generators
\((371,297,261)\) → \((1,i,e\left(\frac{1}{36}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 740 }(557, a) \) | \(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)