Properties

Label 740.593
Modulus 740740
Conductor 55
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0]))
 
pari: [g,chi] = znchar(Mod(593,740))
 

Basic properties

Modulus: 740740
Conductor: 55
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ5(3,)\chi_{5}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 740.q

χ740(297,)\chi_{740}(297,\cdot) χ740(593,)\chi_{740}(593,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ5)\Q(\zeta_{5})

Values on generators

(371,297,261)(371,297,261)(1,i,1)(1,-i,1)

First values

aa 1-1113377991111131317171919212123232727
χ740(593,a) \chi_{ 740 }(593, a) 1-111iii-i1-111iii-i1-111iii-i
sage: chi.jacobi_sum(n)
 
χ740(593,a)   \chi_{ 740 }(593,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ740(593,))   \tau_{ a }( \chi_{ 740 }(593,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ740(593,),χ740(n,))   J(\chi_{ 740 }(593,·),\chi_{ 740 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ740(593,))  K(a,b,\chi_{ 740 }(593,·)) \; at   a,b=\; a,b = e.g. 1,2