Properties

Label 7448.6049
Modulus $7448$
Conductor $931$
Order $21$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,24,14]))
 
pari: [g,chi] = znchar(Mod(6049,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(931\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{931}(463,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.fq

\(\chi_{7448}(505,\cdot)\) \(\chi_{7448}(729,\cdot)\) \(\chi_{7448}(1793,\cdot)\) \(\chi_{7448}(2633,\cdot)\) \(\chi_{7448}(2857,\cdot)\) \(\chi_{7448}(3697,\cdot)\) \(\chi_{7448}(4761,\cdot)\) \(\chi_{7448}(4985,\cdot)\) \(\chi_{7448}(5825,\cdot)\) \(\chi_{7448}(6049,\cdot)\) \(\chi_{7448}(6889,\cdot)\) \(\chi_{7448}(7113,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((1863,3725,3041,3137)\) → \((1,1,e\left(\frac{4}{7}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(6049, a) \) \(1\)\(1\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{5}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(6049,a) \;\) at \(\;a = \) e.g. 2