Properties

Label 7448.649
Modulus 74487448
Conductor 931931
Order 126126
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,33,91]))
 
pari: [g,chi] = znchar(Mod(649,7448))
 

Basic properties

Modulus: 74487448
Conductor: 931931
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ931(649,)\chi_{931}(649,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.ih

χ7448(33,)\chi_{7448}(33,\cdot) χ7448(241,)\chi_{7448}(241,\cdot) χ7448(409,)\chi_{7448}(409,\cdot) χ7448(649,)\chi_{7448}(649,\cdot) χ7448(1193,)\chi_{7448}(1193,\cdot) χ7448(1473,)\chi_{7448}(1473,\cdot) χ7448(1713,)\chi_{7448}(1713,\cdot) χ7448(1769,)\chi_{7448}(1769,\cdot) χ7448(2161,)\chi_{7448}(2161,\cdot) χ7448(2257,)\chi_{7448}(2257,\cdot) χ7448(2369,)\chi_{7448}(2369,\cdot) χ7448(2537,)\chi_{7448}(2537,\cdot) χ7448(2777,)\chi_{7448}(2777,\cdot) χ7448(2833,)\chi_{7448}(2833,\cdot) χ7448(3225,)\chi_{7448}(3225,\cdot) χ7448(3321,)\chi_{7448}(3321,\cdot) χ7448(3433,)\chi_{7448}(3433,\cdot) χ7448(3601,)\chi_{7448}(3601,\cdot) χ7448(3897,)\chi_{7448}(3897,\cdot) χ7448(4289,)\chi_{7448}(4289,\cdot) χ7448(4385,)\chi_{7448}(4385,\cdot) χ7448(4497,)\chi_{7448}(4497,\cdot) χ7448(4665,)\chi_{7448}(4665,\cdot) χ7448(4905,)\chi_{7448}(4905,\cdot) χ7448(4961,)\chi_{7448}(4961,\cdot) χ7448(5353,)\chi_{7448}(5353,\cdot) χ7448(5449,)\chi_{7448}(5449,\cdot) χ7448(5561,)\chi_{7448}(5561,\cdot) χ7448(5729,)\chi_{7448}(5729,\cdot) χ7448(5969,)\chi_{7448}(5969,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(1863,3725,3041,3137)(1863,3725,3041,3137)(1,1,e(1142),e(1318))(1,1,e\left(\frac{11}{42}\right),e\left(\frac{13}{18}\right))

First values

aa 1-1113355991111131315151717232325252727
χ7448(649,a) \chi_{ 7448 }(649, a) 1111e(4163)e\left(\frac{41}{63}\right)e(19126)e\left(\frac{19}{126}\right)e(1963)e\left(\frac{19}{63}\right)e(17)e\left(\frac{1}{7}\right)e(1663)e\left(\frac{16}{63}\right)e(101126)e\left(\frac{101}{126}\right)e(97126)e\left(\frac{97}{126}\right)e(2563)e\left(\frac{25}{63}\right)e(1963)e\left(\frac{19}{63}\right)e(2021)e\left(\frac{20}{21}\right)
sage: chi.jacobi_sum(n)
 
χ7448(649,a)   \chi_{ 7448 }(649,a) \; at   a=\;a = e.g. 2