from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,0,33,91]))
pari: [g,chi] = znchar(Mod(649,7448))
χ7448(33,⋅)
χ7448(241,⋅)
χ7448(409,⋅)
χ7448(649,⋅)
χ7448(1193,⋅)
χ7448(1473,⋅)
χ7448(1713,⋅)
χ7448(1769,⋅)
χ7448(2161,⋅)
χ7448(2257,⋅)
χ7448(2369,⋅)
χ7448(2537,⋅)
χ7448(2777,⋅)
χ7448(2833,⋅)
χ7448(3225,⋅)
χ7448(3321,⋅)
χ7448(3433,⋅)
χ7448(3601,⋅)
χ7448(3897,⋅)
χ7448(4289,⋅)
χ7448(4385,⋅)
χ7448(4497,⋅)
χ7448(4665,⋅)
χ7448(4905,⋅)
χ7448(4961,⋅)
χ7448(5353,⋅)
χ7448(5449,⋅)
χ7448(5561,⋅)
χ7448(5729,⋅)
χ7448(5969,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1863,3725,3041,3137) → (1,1,e(4211),e(1813))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 23 | 25 | 27 |
χ7448(649,a) |
1 | 1 | e(6341) | e(12619) | e(6319) | e(71) | e(6316) | e(126101) | e(12697) | e(6325) | e(6319) | e(2120) |