Properties

Label 7448.7283
Modulus $7448$
Conductor $1064$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,3,14]))
 
pari: [g,chi] = znchar(Mod(7283,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(1064\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1064}(899,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.fl

\(\chi_{7448}(803,\cdot)\) \(\chi_{7448}(1011,\cdot)\) \(\chi_{7448}(1195,\cdot)\) \(\chi_{7448}(1795,\cdot)\) \(\chi_{7448}(5507,\cdot)\) \(\chi_{7448}(7283,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1863,3725,3041,3137)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(7283, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(7283,a) \;\) at \(\;a = \) e.g. 2