Properties

Label 7448.7283
Modulus 74487448
Conductor 10641064
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,3,14]))
 
Copy content pari:[g,chi] = znchar(Mod(7283,7448))
 

Basic properties

Modulus: 74487448
Conductor: 10641064
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1064(899,)\chi_{1064}(899,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7448.fl

χ7448(803,)\chi_{7448}(803,\cdot) χ7448(1011,)\chi_{7448}(1011,\cdot) χ7448(1195,)\chi_{7448}(1195,\cdot) χ7448(1795,)\chi_{7448}(1795,\cdot) χ7448(5507,)\chi_{7448}(5507,\cdot) χ7448(7283,)\chi_{7448}(7283,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(1863,3725,3041,3137)(1863,3725,3041,3137)(1,1,e(16),e(79))(-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{7}{9}\right))

First values

aa 1-1113355991111131315151717232325252727
χ7448(7283,a) \chi_{ 7448 }(7283, a) 1111e(518)e\left(\frac{5}{18}\right)e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)11e(89)e\left(\frac{8}{9}\right)e(118)e\left(\frac{1}{18}\right)e(1718)e\left(\frac{17}{18}\right)e(718)e\left(\frac{7}{18}\right)e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ7448(7283,a)   \chi_{ 7448 }(7283,a) \; at   a=\;a = e.g. 2