Properties

Label 7448.ex
Modulus 74487448
Conductor 532532
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,15,14]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(215,7448))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 74487448
Conductor: 532532
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 532.cd
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.358978251109745001069338205028924260352.2

Characters in Galois orbit

Character 1-1 11 33 55 99 1111 1313 1515 1717 2323 2525 2727
χ7448(215,)\chi_{7448}(215,\cdot) 11 11 e(49)e\left(\frac{4}{9}\right) e(1118)e\left(\frac{11}{18}\right) e(89)e\left(\frac{8}{9}\right) e(16)e\left(\frac{1}{6}\right) e(718)e\left(\frac{7}{18}\right) e(118)e\left(\frac{1}{18}\right) e(1118)e\left(\frac{11}{18}\right) e(1318)e\left(\frac{13}{18}\right) e(29)e\left(\frac{2}{9}\right) e(13)e\left(\frac{1}{3}\right)
χ7448(423,)\chi_{7448}(423,\cdot) 11 11 e(29)e\left(\frac{2}{9}\right) e(118)e\left(\frac{1}{18}\right) e(49)e\left(\frac{4}{9}\right) e(56)e\left(\frac{5}{6}\right) e(1718)e\left(\frac{17}{18}\right) e(518)e\left(\frac{5}{18}\right) e(118)e\left(\frac{1}{18}\right) e(1118)e\left(\frac{11}{18}\right) e(19)e\left(\frac{1}{9}\right) e(23)e\left(\frac{2}{3}\right)
χ7448(815,)\chi_{7448}(815,\cdot) 11 11 e(89)e\left(\frac{8}{9}\right) e(1318)e\left(\frac{13}{18}\right) e(79)e\left(\frac{7}{9}\right) e(56)e\left(\frac{5}{6}\right) e(518)e\left(\frac{5}{18}\right) e(1118)e\left(\frac{11}{18}\right) e(1318)e\left(\frac{13}{18}\right) e(1718)e\left(\frac{17}{18}\right) e(49)e\left(\frac{4}{9}\right) e(23)e\left(\frac{2}{3}\right)
χ7448(1391,)\chi_{7448}(1391,\cdot) 11 11 e(79)e\left(\frac{7}{9}\right) e(1718)e\left(\frac{17}{18}\right) e(59)e\left(\frac{5}{9}\right) e(16)e\left(\frac{1}{6}\right) e(118)e\left(\frac{1}{18}\right) e(1318)e\left(\frac{13}{18}\right) e(1718)e\left(\frac{17}{18}\right) e(718)e\left(\frac{7}{18}\right) e(89)e\left(\frac{8}{9}\right) e(13)e\left(\frac{1}{3}\right)
χ7448(2175,)\chi_{7448}(2175,\cdot) 11 11 e(19)e\left(\frac{1}{9}\right) e(518)e\left(\frac{5}{18}\right) e(29)e\left(\frac{2}{9}\right) e(16)e\left(\frac{1}{6}\right) e(1318)e\left(\frac{13}{18}\right) e(718)e\left(\frac{7}{18}\right) e(518)e\left(\frac{5}{18}\right) e(118)e\left(\frac{1}{18}\right) e(59)e\left(\frac{5}{9}\right) e(13)e\left(\frac{1}{3}\right)
χ7448(5127,)\chi_{7448}(5127,\cdot) 11 11 e(59)e\left(\frac{5}{9}\right) e(718)e\left(\frac{7}{18}\right) e(19)e\left(\frac{1}{9}\right) e(56)e\left(\frac{5}{6}\right) e(1118)e\left(\frac{11}{18}\right) e(1718)e\left(\frac{17}{18}\right) e(718)e\left(\frac{7}{18}\right) e(518)e\left(\frac{5}{18}\right) e(79)e\left(\frac{7}{9}\right) e(23)e\left(\frac{2}{3}\right)