from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7488, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,3,24,32]))
pari: [g,chi] = znchar(Mod(6587,7488))
Basic properties
Modulus: | \(7488\) | |
Conductor: | \(2496\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{2496}(1595,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7488.nv
\(\chi_{7488}(35,\cdot)\) \(\chi_{7488}(107,\cdot)\) \(\chi_{7488}(971,\cdot)\) \(\chi_{7488}(1043,\cdot)\) \(\chi_{7488}(1907,\cdot)\) \(\chi_{7488}(1979,\cdot)\) \(\chi_{7488}(2843,\cdot)\) \(\chi_{7488}(2915,\cdot)\) \(\chi_{7488}(3779,\cdot)\) \(\chi_{7488}(3851,\cdot)\) \(\chi_{7488}(4715,\cdot)\) \(\chi_{7488}(4787,\cdot)\) \(\chi_{7488}(5651,\cdot)\) \(\chi_{7488}(5723,\cdot)\) \(\chi_{7488}(6587,\cdot)\) \(\chi_{7488}(6659,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((703,6085,5825,5761)\) → \((-1,e\left(\frac{1}{16}\right),-1,e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 7488 }(6587, a) \) | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(1\) | \(e\left(\frac{1}{48}\right)\) |
sage: chi.jacobi_sum(n)