Properties

Label 7488.6587
Modulus $7488$
Conductor $2496$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7488, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,3,24,32]))
 
pari: [g,chi] = znchar(Mod(6587,7488))
 

Basic properties

Modulus: \(7488\)
Conductor: \(2496\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2496}(1595,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7488.nv

\(\chi_{7488}(35,\cdot)\) \(\chi_{7488}(107,\cdot)\) \(\chi_{7488}(971,\cdot)\) \(\chi_{7488}(1043,\cdot)\) \(\chi_{7488}(1907,\cdot)\) \(\chi_{7488}(1979,\cdot)\) \(\chi_{7488}(2843,\cdot)\) \(\chi_{7488}(2915,\cdot)\) \(\chi_{7488}(3779,\cdot)\) \(\chi_{7488}(3851,\cdot)\) \(\chi_{7488}(4715,\cdot)\) \(\chi_{7488}(4787,\cdot)\) \(\chi_{7488}(5651,\cdot)\) \(\chi_{7488}(5723,\cdot)\) \(\chi_{7488}(6587,\cdot)\) \(\chi_{7488}(6659,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((703,6085,5825,5761)\) → \((-1,e\left(\frac{1}{16}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 7488 }(6587, a) \) \(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{41}{48}\right)\)\(1\)\(e\left(\frac{1}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7488 }(6587,a) \;\) at \(\;a = \) e.g. 2