from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7569, base_ring=CyclotomicField(58))
M = H._module
chi = DirichletCharacter(H, M([0,27]))
chi.galois_orbit()
[g,chi] = znchar(Mod(28,7569))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(7569\) | |
Conductor: | \(841\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(58\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 841.h | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{29})$ |
Fixed field: | Number field defined by a degree 58 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{7569}(28,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{23}{58}\right)\) | \(e\left(\frac{3}{58}\right)\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(-1\) | \(e\left(\frac{25}{29}\right)\) |
\(\chi_{7569}(289,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{58}\right)\) | \(e\left(\frac{9}{29}\right)\) | \(e\left(\frac{25}{29}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{33}{58}\right)\) | \(e\left(\frac{21}{29}\right)\) | \(-1\) | \(e\left(\frac{18}{29}\right)\) |
\(\chi_{7569}(550,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{58}\right)\) | \(e\left(\frac{20}{29}\right)\) | \(e\left(\frac{4}{29}\right)\) | \(e\left(\frac{19}{29}\right)\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{57}{58}\right)\) | \(e\left(\frac{25}{58}\right)\) | \(e\left(\frac{8}{29}\right)\) | \(-1\) | \(e\left(\frac{11}{29}\right)\) |
\(\chi_{7569}(811,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{35}{58}\right)\) | \(e\left(\frac{55}{58}\right)\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(-1\) | \(e\left(\frac{4}{29}\right)\) |
\(\chi_{7569}(1072,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{58}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(e\left(\frac{20}{29}\right)\) | \(e\left(\frac{8}{29}\right)\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{53}{58}\right)\) | \(e\left(\frac{9}{58}\right)\) | \(e\left(\frac{11}{29}\right)\) | \(-1\) | \(e\left(\frac{26}{29}\right)\) |
\(\chi_{7569}(1333,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{58}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(e\left(\frac{43}{58}\right)\) | \(e\left(\frac{51}{58}\right)\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(-1\) | \(e\left(\frac{19}{29}\right)\) |
\(\chi_{7569}(1594,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{58}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{26}{29}\right)\) | \(e\left(\frac{47}{58}\right)\) | \(e\left(\frac{49}{58}\right)\) | \(e\left(\frac{51}{58}\right)\) | \(e\left(\frac{14}{29}\right)\) | \(-1\) | \(e\left(\frac{12}{29}\right)\) |
\(\chi_{7569}(1855,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{51}{58}\right)\) | \(e\left(\frac{47}{58}\right)\) | \(e\left(\frac{43}{58}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(-1\) | \(e\left(\frac{5}{29}\right)\) |
\(\chi_{7569}(2116,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{57}{58}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{23}{29}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(e\left(\frac{55}{58}\right)\) | \(e\left(\frac{45}{58}\right)\) | \(e\left(\frac{35}{58}\right)\) | \(e\left(\frac{17}{29}\right)\) | \(-1\) | \(e\left(\frac{27}{29}\right)\) |
\(\chi_{7569}(2377,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{43}{58}\right)\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{4}{29}\right)\) | \(-1\) | \(e\left(\frac{20}{29}\right)\) |
\(\chi_{7569}(2638,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{58}\right)\) | \(e\left(\frac{21}{29}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(e\left(\frac{4}{29}\right)\) | \(e\left(\frac{5}{58}\right)\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{20}{29}\right)\) | \(-1\) | \(e\left(\frac{13}{29}\right)\) |
\(\chi_{7569}(2899,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{58}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(e\left(\frac{9}{58}\right)\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{11}{58}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(-1\) | \(e\left(\frac{6}{29}\right)\) |
\(\chi_{7569}(3160,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{58}\right)\) | \(e\left(\frac{14}{29}\right)\) | \(e\left(\frac{26}{29}\right)\) | \(e\left(\frac{22}{29}\right)\) | \(e\left(\frac{13}{58}\right)\) | \(e\left(\frac{37}{58}\right)\) | \(e\left(\frac{3}{58}\right)\) | \(e\left(\frac{23}{29}\right)\) | \(-1\) | \(e\left(\frac{28}{29}\right)\) |
\(\chi_{7569}(3421,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{58}\right)\) | \(e\left(\frac{25}{29}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{35}{58}\right)\) | \(e\left(\frac{53}{58}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(-1\) | \(e\left(\frac{21}{29}\right)\) |
\(\chi_{7569}(3682,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(e\left(\frac{11}{29}\right)\) | \(e\left(\frac{21}{58}\right)\) | \(e\left(\frac{33}{58}\right)\) | \(e\left(\frac{45}{58}\right)\) | \(e\left(\frac{26}{29}\right)\) | \(-1\) | \(e\left(\frac{14}{29}\right)\) |
\(\chi_{7569}(3943,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{58}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(e\left(\frac{21}{29}\right)\) | \(e\left(\frac{20}{29}\right)\) | \(e\left(\frac{25}{58}\right)\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{37}{58}\right)\) | \(e\left(\frac{13}{29}\right)\) | \(-1\) | \(e\left(\frac{7}{29}\right)\) |
\(\chi_{7569}(4465,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{58}\right)\) | \(e\left(\frac{11}{29}\right)\) | \(e\left(\frac{8}{29}\right)\) | \(e\left(\frac{9}{29}\right)\) | \(e\left(\frac{33}{58}\right)\) | \(e\left(\frac{27}{58}\right)\) | \(e\left(\frac{21}{58}\right)\) | \(e\left(\frac{16}{29}\right)\) | \(-1\) | \(e\left(\frac{22}{29}\right)\) |
\(\chi_{7569}(4726,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{51}{58}\right)\) | \(e\left(\frac{22}{29}\right)\) | \(e\left(\frac{16}{29}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(e\left(\frac{37}{58}\right)\) | \(e\left(\frac{25}{58}\right)\) | \(e\left(\frac{13}{58}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(-1\) | \(e\left(\frac{15}{29}\right)\) |
\(\chi_{7569}(4987,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{33}{58}\right)\) | \(e\left(\frac{4}{29}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{23}{58}\right)\) | \(e\left(\frac{5}{58}\right)\) | \(e\left(\frac{19}{29}\right)\) | \(-1\) | \(e\left(\frac{8}{29}\right)\) |
\(\chi_{7569}(5248,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{58}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{45}{58}\right)\) | \(e\left(\frac{21}{58}\right)\) | \(e\left(\frac{55}{58}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(-1\) | \(e\left(\frac{1}{29}\right)\) |
\(\chi_{7569}(5509,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{58}\right)\) | \(e\left(\frac{26}{29}\right)\) | \(e\left(\frac{11}{29}\right)\) | \(e\left(\frac{16}{29}\right)\) | \(e\left(\frac{49}{58}\right)\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{47}{58}\right)\) | \(e\left(\frac{22}{29}\right)\) | \(-1\) | \(e\left(\frac{23}{29}\right)\) |
\(\chi_{7569}(5770,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{58}\right)\) | \(e\left(\frac{8}{29}\right)\) | \(e\left(\frac{19}{29}\right)\) | \(e\left(\frac{25}{29}\right)\) | \(e\left(\frac{53}{58}\right)\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{9}{29}\right)\) | \(-1\) | \(e\left(\frac{16}{29}\right)\) |
\(\chi_{7569}(6031,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{19}{29}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(e\left(\frac{57}{58}\right)\) | \(e\left(\frac{15}{58}\right)\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{25}{29}\right)\) | \(-1\) | \(e\left(\frac{9}{29}\right)\) |
\(\chi_{7569}(6292,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{14}{29}\right)\) | \(e\left(\frac{3}{58}\right)\) | \(e\left(\frac{13}{58}\right)\) | \(e\left(\frac{23}{58}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(-1\) | \(e\left(\frac{2}{29}\right)\) |
\(\chi_{7569}(6553,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{14}{29}\right)\) | \(e\left(\frac{23}{29}\right)\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{11}{58}\right)\) | \(e\left(\frac{15}{58}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(-1\) | \(e\left(\frac{24}{29}\right)\) |
\(\chi_{7569}(6814,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{58}\right)\) | \(e\left(\frac{23}{29}\right)\) | \(e\left(\frac{22}{29}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{11}{58}\right)\) | \(e\left(\frac{9}{58}\right)\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(-1\) | \(e\left(\frac{17}{29}\right)\) |
\(\chi_{7569}(7075,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{58}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{15}{58}\right)\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{57}{58}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(-1\) | \(e\left(\frac{10}{29}\right)\) |
\(\chi_{7569}(7336,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{45}{58}\right)\) | \(e\left(\frac{16}{29}\right)\) | \(e\left(\frac{9}{29}\right)\) | \(e\left(\frac{21}{29}\right)\) | \(e\left(\frac{19}{58}\right)\) | \(e\left(\frac{5}{58}\right)\) | \(e\left(\frac{49}{58}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(-1\) | \(e\left(\frac{3}{29}\right)\) |