Properties

Label 7569.y
Modulus $7569$
Conductor $841$
Order $58$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(58))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(28,7569))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7569\)
Conductor: \(841\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(58\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 841.h
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{29})$
Fixed field: Number field defined by a degree 58 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{7569}(28,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(-1\) \(e\left(\frac{25}{29}\right)\)
\(\chi_{7569}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(-1\) \(e\left(\frac{18}{29}\right)\)
\(\chi_{7569}(550,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{8}{29}\right)\) \(-1\) \(e\left(\frac{11}{29}\right)\)
\(\chi_{7569}(811,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(-1\) \(e\left(\frac{4}{29}\right)\)
\(\chi_{7569}(1072,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(-1\) \(e\left(\frac{26}{29}\right)\)
\(\chi_{7569}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(-1\) \(e\left(\frac{19}{29}\right)\)
\(\chi_{7569}(1594,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(-1\) \(e\left(\frac{12}{29}\right)\)
\(\chi_{7569}(1855,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(-1\) \(e\left(\frac{5}{29}\right)\)
\(\chi_{7569}(2116,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(-1\) \(e\left(\frac{27}{29}\right)\)
\(\chi_{7569}(2377,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(-1\) \(e\left(\frac{20}{29}\right)\)
\(\chi_{7569}(2638,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(-1\) \(e\left(\frac{13}{29}\right)\)
\(\chi_{7569}(2899,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(-1\) \(e\left(\frac{6}{29}\right)\)
\(\chi_{7569}(3160,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(-1\) \(e\left(\frac{28}{29}\right)\)
\(\chi_{7569}(3421,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(-1\) \(e\left(\frac{21}{29}\right)\)
\(\chi_{7569}(3682,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(-1\) \(e\left(\frac{14}{29}\right)\)
\(\chi_{7569}(3943,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(-1\) \(e\left(\frac{7}{29}\right)\)
\(\chi_{7569}(4465,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(-1\) \(e\left(\frac{22}{29}\right)\)
\(\chi_{7569}(4726,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(-1\) \(e\left(\frac{15}{29}\right)\)
\(\chi_{7569}(4987,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(-1\) \(e\left(\frac{8}{29}\right)\)
\(\chi_{7569}(5248,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(-1\) \(e\left(\frac{1}{29}\right)\)
\(\chi_{7569}(5509,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(-1\) \(e\left(\frac{23}{29}\right)\)
\(\chi_{7569}(5770,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(-1\) \(e\left(\frac{16}{29}\right)\)
\(\chi_{7569}(6031,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(-1\) \(e\left(\frac{9}{29}\right)\)
\(\chi_{7569}(6292,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(-1\) \(e\left(\frac{2}{29}\right)\)
\(\chi_{7569}(6553,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(-1\) \(e\left(\frac{24}{29}\right)\)
\(\chi_{7569}(6814,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(-1\) \(e\left(\frac{17}{29}\right)\)
\(\chi_{7569}(7075,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(-1\) \(e\left(\frac{10}{29}\right)\)
\(\chi_{7569}(7336,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(-1\) \(e\left(\frac{3}{29}\right)\)