Properties

Label 759.173
Modulus $759$
Conductor $759$
Order $110$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,33,100]))
 
pari: [g,chi] = znchar(Mod(173,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(759\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.bd

\(\chi_{759}(2,\cdot)\) \(\chi_{759}(8,\cdot)\) \(\chi_{759}(29,\cdot)\) \(\chi_{759}(35,\cdot)\) \(\chi_{759}(41,\cdot)\) \(\chi_{759}(50,\cdot)\) \(\chi_{759}(62,\cdot)\) \(\chi_{759}(95,\cdot)\) \(\chi_{759}(101,\cdot)\) \(\chi_{759}(128,\cdot)\) \(\chi_{759}(140,\cdot)\) \(\chi_{759}(167,\cdot)\) \(\chi_{759}(173,\cdot)\) \(\chi_{759}(200,\cdot)\) \(\chi_{759}(215,\cdot)\) \(\chi_{759}(233,\cdot)\) \(\chi_{759}(239,\cdot)\) \(\chi_{759}(248,\cdot)\) \(\chi_{759}(266,\cdot)\) \(\chi_{759}(305,\cdot)\) \(\chi_{759}(326,\cdot)\) \(\chi_{759}(338,\cdot)\) \(\chi_{759}(347,\cdot)\) \(\chi_{759}(371,\cdot)\) \(\chi_{759}(380,\cdot)\) \(\chi_{759}(404,\cdot)\) \(\chi_{759}(446,\cdot)\) \(\chi_{759}(464,\cdot)\) \(\chi_{759}(491,\cdot)\) \(\chi_{759}(512,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((254,277,166)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{10}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(173, a) \) \(1\)\(1\)\(e\left(\frac{34}{55}\right)\)\(e\left(\frac{13}{55}\right)\)\(e\left(\frac{67}{110}\right)\)\(e\left(\frac{41}{110}\right)\)\(e\left(\frac{47}{55}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{3}{110}\right)\)\(e\left(\frac{109}{110}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{31}{55}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(173,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(173,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(173,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(173,·)) \;\) at \(\; a,b = \) e.g. 1,2