Properties

Label 759.7
Modulus $759$
Conductor $253$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,77,95]))
 
pari: [g,chi] = znchar(Mod(7,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{253}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.z

\(\chi_{759}(7,\cdot)\) \(\chi_{759}(19,\cdot)\) \(\chi_{759}(28,\cdot)\) \(\chi_{759}(40,\cdot)\) \(\chi_{759}(61,\cdot)\) \(\chi_{759}(79,\cdot)\) \(\chi_{759}(106,\cdot)\) \(\chi_{759}(112,\cdot)\) \(\chi_{759}(145,\cdot)\) \(\chi_{759}(172,\cdot)\) \(\chi_{759}(178,\cdot)\) \(\chi_{759}(205,\cdot)\) \(\chi_{759}(217,\cdot)\) \(\chi_{759}(226,\cdot)\) \(\chi_{759}(244,\cdot)\) \(\chi_{759}(250,\cdot)\) \(\chi_{759}(283,\cdot)\) \(\chi_{759}(304,\cdot)\) \(\chi_{759}(310,\cdot)\) \(\chi_{759}(316,\cdot)\) \(\chi_{759}(337,\cdot)\) \(\chi_{759}(343,\cdot)\) \(\chi_{759}(382,\cdot)\) \(\chi_{759}(424,\cdot)\) \(\chi_{759}(442,\cdot)\) \(\chi_{759}(448,\cdot)\) \(\chi_{759}(457,\cdot)\) \(\chi_{759}(475,\cdot)\) \(\chi_{759}(481,\cdot)\) \(\chi_{759}(490,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((254,277,166)\) → \((1,e\left(\frac{7}{10}\right),e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(7, a) \) \(1\)\(1\)\(e\left(\frac{47}{110}\right)\)\(e\left(\frac{47}{55}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{17}{55}\right)\)\(e\left(\frac{31}{110}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{87}{110}\right)\)\(e\left(\frac{81}{110}\right)\)\(e\left(\frac{39}{55}\right)\)\(e\left(\frac{19}{55}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(7,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(7,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(7,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(7,·)) \;\) at \(\; a,b = \) e.g. 1,2