Properties

Label 759.7
Modulus 759759
Conductor 253253
Order 110110
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(759, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,77,95]))
 
Copy content pari:[g,chi] = znchar(Mod(7,759))
 

Basic properties

Modulus: 759759
Conductor: 253253
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 110110
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ253(7,)\chi_{253}(7,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 759.z

χ759(7,)\chi_{759}(7,\cdot) χ759(19,)\chi_{759}(19,\cdot) χ759(28,)\chi_{759}(28,\cdot) χ759(40,)\chi_{759}(40,\cdot) χ759(61,)\chi_{759}(61,\cdot) χ759(79,)\chi_{759}(79,\cdot) χ759(106,)\chi_{759}(106,\cdot) χ759(112,)\chi_{759}(112,\cdot) χ759(145,)\chi_{759}(145,\cdot) χ759(172,)\chi_{759}(172,\cdot) χ759(178,)\chi_{759}(178,\cdot) χ759(205,)\chi_{759}(205,\cdot) χ759(217,)\chi_{759}(217,\cdot) χ759(226,)\chi_{759}(226,\cdot) χ759(244,)\chi_{759}(244,\cdot) χ759(250,)\chi_{759}(250,\cdot) χ759(283,)\chi_{759}(283,\cdot) χ759(304,)\chi_{759}(304,\cdot) χ759(310,)\chi_{759}(310,\cdot) χ759(316,)\chi_{759}(316,\cdot) χ759(337,)\chi_{759}(337,\cdot) χ759(343,)\chi_{759}(343,\cdot) χ759(382,)\chi_{759}(382,\cdot) χ759(424,)\chi_{759}(424,\cdot) χ759(442,)\chi_{759}(442,\cdot) χ759(448,)\chi_{759}(448,\cdot) χ759(457,)\chi_{759}(457,\cdot) χ759(475,)\chi_{759}(475,\cdot) χ759(481,)\chi_{759}(481,\cdot) χ759(490,)\chi_{759}(490,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(254,277,166)(254,277,166)(1,e(710),e(1922))(1,e\left(\frac{7}{10}\right),e\left(\frac{19}{22}\right))

First values

aa 1-111224455778810101313141416161717
χ759(7,a) \chi_{ 759 }(7, a) 1111e(47110)e\left(\frac{47}{110}\right)e(4755)e\left(\frac{47}{55}\right)e(73110)e\left(\frac{73}{110}\right)e(1755)e\left(\frac{17}{55}\right)e(31110)e\left(\frac{31}{110}\right)e(111)e\left(\frac{1}{11}\right)e(87110)e\left(\frac{87}{110}\right)e(81110)e\left(\frac{81}{110}\right)e(3955)e\left(\frac{39}{55}\right)e(1955)e\left(\frac{19}{55}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ759(7,a)   \chi_{ 759 }(7,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ759(7,))   \tau_{ a }( \chi_{ 759 }(7,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ759(7,),χ759(n,))   J(\chi_{ 759 }(7,·),\chi_{ 759 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ759(7,))  K(a,b,\chi_{ 759 }(7,·)) \; at   a,b=\; a,b = e.g. 1,2