sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(759, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([0,77,95]))
pari:[g,chi] = znchar(Mod(7,759))
χ759(7,⋅)
χ759(19,⋅)
χ759(28,⋅)
χ759(40,⋅)
χ759(61,⋅)
χ759(79,⋅)
χ759(106,⋅)
χ759(112,⋅)
χ759(145,⋅)
χ759(172,⋅)
χ759(178,⋅)
χ759(205,⋅)
χ759(217,⋅)
χ759(226,⋅)
χ759(244,⋅)
χ759(250,⋅)
χ759(283,⋅)
χ759(304,⋅)
χ759(310,⋅)
χ759(316,⋅)
χ759(337,⋅)
χ759(343,⋅)
χ759(382,⋅)
χ759(424,⋅)
χ759(442,⋅)
χ759(448,⋅)
χ759(457,⋅)
χ759(475,⋅)
χ759(481,⋅)
χ759(490,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(254,277,166) → (1,e(107),e(2219))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ759(7,a) |
1 | 1 | e(11047) | e(5547) | e(11073) | e(5517) | e(11031) | e(111) | e(11087) | e(11081) | e(5539) | e(5519) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)