Basic properties
Modulus: | \(759\) | |
Conductor: | \(253\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(110\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{253}(7,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 759.z
\(\chi_{759}(7,\cdot)\) \(\chi_{759}(19,\cdot)\) \(\chi_{759}(28,\cdot)\) \(\chi_{759}(40,\cdot)\) \(\chi_{759}(61,\cdot)\) \(\chi_{759}(79,\cdot)\) \(\chi_{759}(106,\cdot)\) \(\chi_{759}(112,\cdot)\) \(\chi_{759}(145,\cdot)\) \(\chi_{759}(172,\cdot)\) \(\chi_{759}(178,\cdot)\) \(\chi_{759}(205,\cdot)\) \(\chi_{759}(217,\cdot)\) \(\chi_{759}(226,\cdot)\) \(\chi_{759}(244,\cdot)\) \(\chi_{759}(250,\cdot)\) \(\chi_{759}(283,\cdot)\) \(\chi_{759}(304,\cdot)\) \(\chi_{759}(310,\cdot)\) \(\chi_{759}(316,\cdot)\) \(\chi_{759}(337,\cdot)\) \(\chi_{759}(343,\cdot)\) \(\chi_{759}(382,\cdot)\) \(\chi_{759}(424,\cdot)\) \(\chi_{759}(442,\cdot)\) \(\chi_{759}(448,\cdot)\) \(\chi_{759}(457,\cdot)\) \(\chi_{759}(475,\cdot)\) \(\chi_{759}(481,\cdot)\) \(\chi_{759}(490,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{55})$ |
Fixed field: | Number field defined by a degree 110 polynomial (not computed) |
Values on generators
\((254,277,166)\) → \((1,e\left(\frac{7}{10}\right),e\left(\frac{19}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 759 }(7, a) \) | \(1\) | \(1\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) |