Basic properties
Modulus: | \(759\) | |
Conductor: | \(253\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(110\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{253}(38,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 759.be
\(\chi_{759}(37,\cdot)\) \(\chi_{759}(97,\cdot)\) \(\chi_{759}(103,\cdot)\) \(\chi_{759}(130,\cdot)\) \(\chi_{759}(136,\cdot)\) \(\chi_{759}(148,\cdot)\) \(\chi_{759}(157,\cdot)\) \(\chi_{759}(181,\cdot)\) \(\chi_{759}(214,\cdot)\) \(\chi_{759}(235,\cdot)\) \(\chi_{759}(247,\cdot)\) \(\chi_{759}(268,\cdot)\) \(\chi_{759}(295,\cdot)\) \(\chi_{759}(313,\cdot)\) \(\chi_{759}(355,\cdot)\) \(\chi_{759}(379,\cdot)\) \(\chi_{759}(388,\cdot)\) \(\chi_{759}(412,\cdot)\) \(\chi_{759}(421,\cdot)\) \(\chi_{759}(433,\cdot)\) \(\chi_{759}(454,\cdot)\) \(\chi_{759}(493,\cdot)\) \(\chi_{759}(511,\cdot)\) \(\chi_{759}(520,\cdot)\) \(\chi_{759}(526,\cdot)\) \(\chi_{759}(544,\cdot)\) \(\chi_{759}(559,\cdot)\) \(\chi_{759}(586,\cdot)\) \(\chi_{759}(592,\cdot)\) \(\chi_{759}(619,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{55})$ |
Fixed field: | Number field defined by a degree 110 polynomial (not computed) |
Values on generators
\((254,277,166)\) → \((1,e\left(\frac{2}{5}\right),e\left(\frac{17}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 759 }(544, a) \) | \(-1\) | \(1\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{53}{110}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{1}{110}\right)\) |