Properties

Label 760.309
Modulus 760760
Conductor 760760
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,9,16]))
 
pari: [g,chi] = znchar(Mod(309,760))
 

Basic properties

Modulus: 760760
Conductor: 760760
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 760.cj

χ760(149,)\chi_{760}(149,\cdot) χ760(309,)\chi_{760}(309,\cdot) χ760(389,)\chi_{760}(389,\cdot) χ760(549,)\chi_{760}(549,\cdot) χ760(669,)\chi_{760}(669,\cdot) χ760(709,)\chi_{760}(709,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(191,381,457,401)(191,381,457,401)(1,1,1,e(89))(1,-1,-1,e\left(\frac{8}{9}\right))

First values

aa 1-1113377991111131317172121232327272929
χ760(309,a) \chi_{ 760 }(309, a) 1111e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)e(19)e\left(\frac{1}{9}\right)e(16)e\left(\frac{1}{6}\right)e(49)e\left(\frac{4}{9}\right)e(718)e\left(\frac{7}{18}\right)e(718)e\left(\frac{7}{18}\right)e(518)e\left(\frac{5}{18}\right)e(23)e\left(\frac{2}{3}\right)e(1118)e\left(\frac{11}{18}\right)
sage: chi.jacobi_sum(n)
 
χ760(309,a)   \chi_{ 760 }(309,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ760(309,))   \tau_{ a }( \chi_{ 760 }(309,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ760(309,),χ760(n,))   J(\chi_{ 760 }(309,·),\chi_{ 760 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ760(309,))  K(a,b,\chi_{ 760 }(309,·)) \; at   a,b=\; a,b = e.g. 1,2