sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(760, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,9,9,11]))
pari:[g,chi] = znchar(Mod(509,760))
Modulus: | 760 | |
Conductor: | 760 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 18 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ760(29,⋅)
χ760(109,⋅)
χ760(269,⋅)
χ760(469,⋅)
χ760(509,⋅)
χ760(629,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,381,457,401) → (1,−1,−1,e(1811))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ760(509,a) |
−1 | 1 | e(1817) | e(61) | e(98) | e(65) | e(181) | e(1811) | e(91) | e(1813) | e(65) | e(98) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)