Properties

Label 760.509
Modulus 760760
Conductor 760760
Order 1818
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,9,9,11]))
 
Copy content pari:[g,chi] = znchar(Mod(509,760))
 

Basic properties

Modulus: 760760
Conductor: 760760
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 760.ck

χ760(29,)\chi_{760}(29,\cdot) χ760(109,)\chi_{760}(109,\cdot) χ760(269,)\chi_{760}(269,\cdot) χ760(469,)\chi_{760}(469,\cdot) χ760(509,)\chi_{760}(509,\cdot) χ760(629,)\chi_{760}(629,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.1436650532447139184230793216000000000.1

Values on generators

(191,381,457,401)(191,381,457,401)(1,1,1,e(1118))(1,-1,-1,e\left(\frac{11}{18}\right))

First values

aa 1-1113377991111131317172121232327272929
χ760(509,a) \chi_{ 760 }(509, a) 1-111e(1718)e\left(\frac{17}{18}\right)e(16)e\left(\frac{1}{6}\right)e(89)e\left(\frac{8}{9}\right)e(56)e\left(\frac{5}{6}\right)e(118)e\left(\frac{1}{18}\right)e(1118)e\left(\frac{11}{18}\right)e(19)e\left(\frac{1}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(56)e\left(\frac{5}{6}\right)e(89)e\left(\frac{8}{9}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ760(509,a)   \chi_{ 760 }(509,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ760(509,))   \tau_{ a }( \chi_{ 760 }(509,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ760(509,),χ760(n,))   J(\chi_{ 760 }(509,·),\chi_{ 760 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ760(509,))  K(a,b,\chi_{ 760 }(509,·)) \; at   a,b=\; a,b = e.g. 1,2