Properties

Label 760.71
Modulus 760760
Conductor 7676
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(71,760))
 

Basic properties

Modulus: 760760
Conductor: 7676
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ76(71,)\chi_{76}(71,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 760.ci

χ760(71,)\chi_{760}(71,\cdot) χ760(231,)\chi_{760}(231,\cdot) χ760(431,)\chi_{760}(431,\cdot) χ760(471,)\chi_{760}(471,\cdot) χ760(591,)\chi_{760}(591,\cdot) χ760(751,)\chi_{760}(751,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ76)+\Q(\zeta_{76})^+

Values on generators

(191,381,457,401)(191,381,457,401)(1,1,1,e(718))(-1,1,1,e\left(\frac{7}{18}\right))

First values

aa 1-1113377991111131317172121232327272929
χ760(71,a) \chi_{ 760 }(71, a) 1111e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)e(19)e\left(\frac{1}{9}\right)e(16)e\left(\frac{1}{6}\right)e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(718)e\left(\frac{7}{18}\right)e(518)e\left(\frac{5}{18}\right)e(23)e\left(\frac{2}{3}\right)e(1118)e\left(\frac{11}{18}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ760(71,a)   \chi_{ 760 }(71,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ760(71,))   \tau_{ a }( \chi_{ 760 }(71,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ760(71,),χ760(n,))   J(\chi_{ 760 }(71,·),\chi_{ 760 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ760(71,))  K(a,b,\chi_{ 760 }(71,·)) \; at   a,b=\; a,b = e.g. 1,2