sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(760, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,0,7]))
pari:[g,chi] = znchar(Mod(71,760))
χ760(71,⋅)
χ760(231,⋅)
χ760(431,⋅)
χ760(471,⋅)
χ760(591,⋅)
χ760(751,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,381,457,401) → (−1,1,1,e(187))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ760(71,a) |
1 | 1 | e(95) | e(65) | e(91) | e(61) | e(1817) | e(98) | e(187) | e(185) | e(32) | e(1811) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)