sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7605, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,117,137]))
pari:[g,chi] = znchar(Mod(1423,7605))
χ7605(28,⋅)
χ7605(37,⋅)
χ7605(253,⋅)
χ7605(397,⋅)
χ7605(613,⋅)
χ7605(622,⋅)
χ7605(838,⋅)
χ7605(982,⋅)
χ7605(1198,⋅)
χ7605(1207,⋅)
χ7605(1423,⋅)
χ7605(1567,⋅)
χ7605(1783,⋅)
χ7605(1792,⋅)
χ7605(2008,⋅)
χ7605(2152,⋅)
χ7605(2368,⋅)
χ7605(2377,⋅)
χ7605(2593,⋅)
χ7605(2737,⋅)
χ7605(3178,⋅)
χ7605(3322,⋅)
χ7605(3538,⋅)
χ7605(3547,⋅)
χ7605(3763,⋅)
χ7605(3907,⋅)
χ7605(4123,⋅)
χ7605(4132,⋅)
χ7605(4348,⋅)
χ7605(4492,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(6761,1522,6931) → (1,−i,e(156137))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 14 | 16 | 17 | 19 | 22 |
χ7605(1423,a) |
1 | 1 | e(7849) | e(3910) | e(3928) | e(2623) | e(15671) | e(269) | e(3920) | e(156151) | e(127) | e(121) |
sage:chi.jacobi_sum(n)