Properties

Label 7605.1423
Modulus 76057605
Conductor 845845
Order 156156
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7605, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,117,137]))
 
Copy content pari:[g,chi] = znchar(Mod(1423,7605))
 

Basic properties

Modulus: 76057605
Conductor: 845845
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 156156
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ845(578,)\chi_{845}(578,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7605.gc

χ7605(28,)\chi_{7605}(28,\cdot) χ7605(37,)\chi_{7605}(37,\cdot) χ7605(253,)\chi_{7605}(253,\cdot) χ7605(397,)\chi_{7605}(397,\cdot) χ7605(613,)\chi_{7605}(613,\cdot) χ7605(622,)\chi_{7605}(622,\cdot) χ7605(838,)\chi_{7605}(838,\cdot) χ7605(982,)\chi_{7605}(982,\cdot) χ7605(1198,)\chi_{7605}(1198,\cdot) χ7605(1207,)\chi_{7605}(1207,\cdot) χ7605(1423,)\chi_{7605}(1423,\cdot) χ7605(1567,)\chi_{7605}(1567,\cdot) χ7605(1783,)\chi_{7605}(1783,\cdot) χ7605(1792,)\chi_{7605}(1792,\cdot) χ7605(2008,)\chi_{7605}(2008,\cdot) χ7605(2152,)\chi_{7605}(2152,\cdot) χ7605(2368,)\chi_{7605}(2368,\cdot) χ7605(2377,)\chi_{7605}(2377,\cdot) χ7605(2593,)\chi_{7605}(2593,\cdot) χ7605(2737,)\chi_{7605}(2737,\cdot) χ7605(3178,)\chi_{7605}(3178,\cdot) χ7605(3322,)\chi_{7605}(3322,\cdot) χ7605(3538,)\chi_{7605}(3538,\cdot) χ7605(3547,)\chi_{7605}(3547,\cdot) χ7605(3763,)\chi_{7605}(3763,\cdot) χ7605(3907,)\chi_{7605}(3907,\cdot) χ7605(4123,)\chi_{7605}(4123,\cdot) χ7605(4132,)\chi_{7605}(4132,\cdot) χ7605(4348,)\chi_{7605}(4348,\cdot) χ7605(4492,)\chi_{7605}(4492,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ156)\Q(\zeta_{156})
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

(6761,1522,6931)(6761,1522,6931)(1,i,e(137156))(1,-i,e\left(\frac{137}{156}\right))

First values

aa 1-11122447788111114141616171719192222
χ7605(1423,a) \chi_{ 7605 }(1423, a) 1111e(4978)e\left(\frac{49}{78}\right)e(1039)e\left(\frac{10}{39}\right)e(2839)e\left(\frac{28}{39}\right)e(2326)e\left(\frac{23}{26}\right)e(71156)e\left(\frac{71}{156}\right)e(926)e\left(\frac{9}{26}\right)e(2039)e\left(\frac{20}{39}\right)e(151156)e\left(\frac{151}{156}\right)e(712)e\left(\frac{7}{12}\right)e(112)e\left(\frac{1}{12}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ7605(1423,a)   \chi_{ 7605 }(1423,a) \; at   a=\;a = e.g. 2