Properties

Label 7605.1423
Modulus $7605$
Conductor $845$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,117,137]))
 
pari: [g,chi] = znchar(Mod(1423,7605))
 

Basic properties

Modulus: \(7605\)
Conductor: \(845\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{845}(578,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7605.gc

\(\chi_{7605}(28,\cdot)\) \(\chi_{7605}(37,\cdot)\) \(\chi_{7605}(253,\cdot)\) \(\chi_{7605}(397,\cdot)\) \(\chi_{7605}(613,\cdot)\) \(\chi_{7605}(622,\cdot)\) \(\chi_{7605}(838,\cdot)\) \(\chi_{7605}(982,\cdot)\) \(\chi_{7605}(1198,\cdot)\) \(\chi_{7605}(1207,\cdot)\) \(\chi_{7605}(1423,\cdot)\) \(\chi_{7605}(1567,\cdot)\) \(\chi_{7605}(1783,\cdot)\) \(\chi_{7605}(1792,\cdot)\) \(\chi_{7605}(2008,\cdot)\) \(\chi_{7605}(2152,\cdot)\) \(\chi_{7605}(2368,\cdot)\) \(\chi_{7605}(2377,\cdot)\) \(\chi_{7605}(2593,\cdot)\) \(\chi_{7605}(2737,\cdot)\) \(\chi_{7605}(3178,\cdot)\) \(\chi_{7605}(3322,\cdot)\) \(\chi_{7605}(3538,\cdot)\) \(\chi_{7605}(3547,\cdot)\) \(\chi_{7605}(3763,\cdot)\) \(\chi_{7605}(3907,\cdot)\) \(\chi_{7605}(4123,\cdot)\) \(\chi_{7605}(4132,\cdot)\) \(\chi_{7605}(4348,\cdot)\) \(\chi_{7605}(4492,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((6761,1522,6931)\) → \((1,-i,e\left(\frac{137}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 7605 }(1423, a) \) \(1\)\(1\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{10}{39}\right)\)\(e\left(\frac{28}{39}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{71}{156}\right)\)\(e\left(\frac{9}{26}\right)\)\(e\left(\frac{20}{39}\right)\)\(e\left(\frac{151}{156}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7605 }(1423,a) \;\) at \(\;a = \) e.g. 2