Properties

Label 7605.16
Modulus $7605$
Conductor $1521$
Order $39$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([52,0,2]))
 
pari: [g,chi] = znchar(Mod(16,7605))
 

Basic properties

Modulus: \(7605\)
Conductor: \(1521\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1521}(16,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7605.ee

\(\chi_{7605}(16,\cdot)\) \(\chi_{7605}(256,\cdot)\) \(\chi_{7605}(601,\cdot)\) \(\chi_{7605}(841,\cdot)\) \(\chi_{7605}(1186,\cdot)\) \(\chi_{7605}(1426,\cdot)\) \(\chi_{7605}(1771,\cdot)\) \(\chi_{7605}(2011,\cdot)\) \(\chi_{7605}(2356,\cdot)\) \(\chi_{7605}(2596,\cdot)\) \(\chi_{7605}(2941,\cdot)\) \(\chi_{7605}(3181,\cdot)\) \(\chi_{7605}(3766,\cdot)\) \(\chi_{7605}(4111,\cdot)\) \(\chi_{7605}(4351,\cdot)\) \(\chi_{7605}(4696,\cdot)\) \(\chi_{7605}(4936,\cdot)\) \(\chi_{7605}(5281,\cdot)\) \(\chi_{7605}(5521,\cdot)\) \(\chi_{7605}(5866,\cdot)\) \(\chi_{7605}(6451,\cdot)\) \(\chi_{7605}(6691,\cdot)\) \(\chi_{7605}(7036,\cdot)\) \(\chi_{7605}(7276,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Values on generators

\((6761,1522,6931)\) → \((e\left(\frac{2}{3}\right),1,e\left(\frac{1}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 7605 }(16, a) \) \(1\)\(1\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{16}{39}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{4}{39}\right)\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{29}{39}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7605 }(16,a) \;\) at \(\;a = \) e.g. 2