sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7605, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,0,2]))
pari:[g,chi] = znchar(Mod(16,7605))
χ7605(16,⋅)
χ7605(256,⋅)
χ7605(601,⋅)
χ7605(841,⋅)
χ7605(1186,⋅)
χ7605(1426,⋅)
χ7605(1771,⋅)
χ7605(2011,⋅)
χ7605(2356,⋅)
χ7605(2596,⋅)
χ7605(2941,⋅)
χ7605(3181,⋅)
χ7605(3766,⋅)
χ7605(4111,⋅)
χ7605(4351,⋅)
χ7605(4696,⋅)
χ7605(4936,⋅)
χ7605(5281,⋅)
χ7605(5521,⋅)
χ7605(5866,⋅)
χ7605(6451,⋅)
χ7605(6691,⋅)
χ7605(7036,⋅)
χ7605(7276,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(6761,1522,6931) → (e(32),1,e(391))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 14 | 16 | 17 | 19 | 22 |
χ7605(16,a) |
1 | 1 | e(139) | e(135) | e(3916) | e(131) | e(134) | e(394) | e(1310) | e(3929) | e(32) | 1 |
sage:chi.jacobi_sum(n)