Properties

Label 7605.3037
Modulus $7605$
Conductor $7605$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([52,39,87]))
 
pari: [g,chi] = znchar(Mod(3037,7605))
 

Basic properties

Modulus: \(7605\)
Conductor: \(7605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7605.gb

\(\chi_{7605}(112,\cdot)\) \(\chi_{7605}(148,\cdot)\) \(\chi_{7605}(502,\cdot)\) \(\chi_{7605}(538,\cdot)\) \(\chi_{7605}(697,\cdot)\) \(\chi_{7605}(733,\cdot)\) \(\chi_{7605}(1087,\cdot)\) \(\chi_{7605}(1123,\cdot)\) \(\chi_{7605}(1318,\cdot)\) \(\chi_{7605}(1672,\cdot)\) \(\chi_{7605}(1708,\cdot)\) \(\chi_{7605}(1867,\cdot)\) \(\chi_{7605}(1903,\cdot)\) \(\chi_{7605}(2257,\cdot)\) \(\chi_{7605}(2293,\cdot)\) \(\chi_{7605}(2452,\cdot)\) \(\chi_{7605}(2488,\cdot)\) \(\chi_{7605}(2842,\cdot)\) \(\chi_{7605}(2878,\cdot)\) \(\chi_{7605}(3037,\cdot)\) \(\chi_{7605}(3073,\cdot)\) \(\chi_{7605}(3427,\cdot)\) \(\chi_{7605}(3463,\cdot)\) \(\chi_{7605}(3622,\cdot)\) \(\chi_{7605}(3658,\cdot)\) \(\chi_{7605}(4012,\cdot)\) \(\chi_{7605}(4048,\cdot)\) \(\chi_{7605}(4207,\cdot)\) \(\chi_{7605}(4243,\cdot)\) \(\chi_{7605}(4597,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((6761,1522,6931)\) → \((e\left(\frac{1}{3}\right),i,e\left(\frac{29}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 7605 }(3037, a) \) \(1\)\(1\)\(e\left(\frac{11}{78}\right)\)\(e\left(\frac{11}{39}\right)\)\(e\left(\frac{10}{39}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{121}{156}\right)\)\(e\left(\frac{31}{78}\right)\)\(e\left(\frac{22}{39}\right)\)\(e\left(\frac{35}{52}\right)\)\(-i\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7605 }(3037,a) \;\) at \(\;a = \) e.g. 2