from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7800, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,30,12,55]))
pari: [g,chi] = znchar(Mod(1541,7800))
Basic properties
Modulus: | \(7800\) | |
Conductor: | \(7800\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7800.lq
\(\chi_{7800}(461,\cdot)\) \(\chi_{7800}(821,\cdot)\) \(\chi_{7800}(1181,\cdot)\) \(\chi_{7800}(1541,\cdot)\) \(\chi_{7800}(2021,\cdot)\) \(\chi_{7800}(2381,\cdot)\) \(\chi_{7800}(2741,\cdot)\) \(\chi_{7800}(3581,\cdot)\) \(\chi_{7800}(3941,\cdot)\) \(\chi_{7800}(4661,\cdot)\) \(\chi_{7800}(5141,\cdot)\) \(\chi_{7800}(5861,\cdot)\) \(\chi_{7800}(6221,\cdot)\) \(\chi_{7800}(7061,\cdot)\) \(\chi_{7800}(7421,\cdot)\) \(\chi_{7800}(7781,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((1951,3901,5201,7177,4201)\) → \((1,-1,-1,e\left(\frac{1}{5}\right),e\left(\frac{11}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7800 }(1541, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage: chi.jacobi_sum(n)