Properties

Label 7800.2759
Modulus $7800$
Conductor $3900$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,0,15,21,10]))
 
pari: [g,chi] = znchar(Mod(2759,7800))
 

Basic properties

Modulus: \(7800\)
Conductor: \(3900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3900}(2759,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7800.jt

\(\chi_{7800}(1439,\cdot)\) \(\chi_{7800}(2759,\cdot)\) \(\chi_{7800}(4319,\cdot)\) \(\chi_{7800}(4559,\cdot)\) \(\chi_{7800}(5879,\cdot)\) \(\chi_{7800}(6119,\cdot)\) \(\chi_{7800}(7439,\cdot)\) \(\chi_{7800}(7679,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1951,3901,5201,7177,4201)\) → \((-1,1,-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7800 }(2759, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7800 }(2759,a) \;\) at \(\;a = \) e.g. 2