Properties

Label 7800.3347
Modulus $7800$
Conductor $7800$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,30,30,51,25]))
 
pari: [g,chi] = znchar(Mod(3347,7800))
 

Basic properties

Modulus: \(7800\)
Conductor: \(7800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7800.kp

\(\chi_{7800}(227,\cdot)\) \(\chi_{7800}(323,\cdot)\) \(\chi_{7800}(587,\cdot)\) \(\chi_{7800}(683,\cdot)\) \(\chi_{7800}(1787,\cdot)\) \(\chi_{7800}(1883,\cdot)\) \(\chi_{7800}(2147,\cdot)\) \(\chi_{7800}(3347,\cdot)\) \(\chi_{7800}(3803,\cdot)\) \(\chi_{7800}(5003,\cdot)\) \(\chi_{7800}(5267,\cdot)\) \(\chi_{7800}(5363,\cdot)\) \(\chi_{7800}(6467,\cdot)\) \(\chi_{7800}(6563,\cdot)\) \(\chi_{7800}(6827,\cdot)\) \(\chi_{7800}(6923,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1951,3901,5201,7177,4201)\) → \((-1,-1,-1,e\left(\frac{17}{20}\right),e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7800 }(3347, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{19}{60}\right)\)\(e\left(\frac{7}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7800 }(3347,a) \;\) at \(\;a = \) e.g. 2