from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,0,0,18,5]))
pari: [g,chi] = znchar(Mod(4519,7800))
Basic properties
Modulus: | \(7800\) | |
Conductor: | \(1300\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1300}(619,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7800.ig
\(\chi_{7800}(1279,\cdot)\) \(\chi_{7800}(2839,\cdot)\) \(\chi_{7800}(2959,\cdot)\) \(\chi_{7800}(4519,\cdot)\) \(\chi_{7800}(5959,\cdot)\) \(\chi_{7800}(6079,\cdot)\) \(\chi_{7800}(7519,\cdot)\) \(\chi_{7800}(7639,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | 20.20.31241389779108128051757812500000000000000000000.1 |
Values on generators
\((1951,3901,5201,7177,4201)\) → \((-1,1,1,e\left(\frac{9}{10}\right),i)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7800 }(4519, a) \) | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)