Properties

Label 7800.4999
Modulus 78007800
Conductor 260260
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7800, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,0,0,6,11]))
 
Copy content pari:[g,chi] = znchar(Mod(4999,7800))
 

Basic properties

Modulus: 78007800
Conductor: 260260
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1212
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ260(59,)\chi_{260}(59,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7800.gi

χ7800(799,)\chi_{7800}(799,\cdot) χ7800(4999,)\chi_{7800}(4999,\cdot) χ7800(6199,)\chi_{7800}(6199,\cdot) χ7800(7399,)\chi_{7800}(7399,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.114698265218368000000.1

Values on generators

(1951,3901,5201,7177,4201)(1951,3901,5201,7177,4201)(1,1,1,1,e(1112))(-1,1,1,-1,e\left(\frac{11}{12}\right))

First values

aa 1-11177111117171919232329293131373741414343
χ7800(4999,a) \chi_{ 7800 }(4999, a) 1111e(112)e\left(\frac{1}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(13)e\left(\frac{1}{3}\right)e(112)e\left(\frac{1}{12}\right)e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)i-ie(1112)e\left(\frac{11}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ7800(4999,a)   \chi_{ 7800 }(4999,a) \; at   a=\;a = e.g. 2