sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7800, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,0,30,18,35]))
pari:[g,chi] = znchar(Mod(89,7800))
χ7800(89,⋅)
χ7800(929,⋅)
χ7800(1289,⋅)
χ7800(2009,⋅)
χ7800(2489,⋅)
χ7800(3209,⋅)
χ7800(3569,⋅)
χ7800(4409,⋅)
χ7800(4769,⋅)
χ7800(5129,⋅)
χ7800(5609,⋅)
χ7800(5969,⋅)
χ7800(6329,⋅)
χ7800(6689,⋅)
χ7800(7169,⋅)
χ7800(7529,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1951,3901,5201,7177,4201) → (1,1,−1,e(103),e(127))
a |
−1 | 1 | 7 | 11 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ7800(89,a) |
1 | 1 | e(1211) | e(6023) | e(3017) | e(6019) | e(3019) | e(3013) | e(2013) | e(6047) | e(6017) | e(32) |
sage:chi.jacobi_sum(n)