from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7800, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,8,5]))
pari: [g,chi] = znchar(Mod(961,7800))
Basic properties
Modulus: | \(7800\) | |
Conductor: | \(325\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(10\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{325}(311,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7800.et
\(\chi_{7800}(961,\cdot)\) \(\chi_{7800}(2521,\cdot)\) \(\chi_{7800}(4081,\cdot)\) \(\chi_{7800}(5641,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{5})\) |
Fixed field: | 10.10.56654815673828125.1 |
Values on generators
\((1951,3901,5201,7177,4201)\) → \((1,1,1,e\left(\frac{4}{5}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 7800 }(961, a) \) | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(1\) |
sage: chi.jacobi_sum(n)