Properties

Label 7800.961
Modulus $7800$
Conductor $325$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,8,5]))
 
pari: [g,chi] = znchar(Mod(961,7800))
 

Basic properties

Modulus: \(7800\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(311,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7800.et

\(\chi_{7800}(961,\cdot)\) \(\chi_{7800}(2521,\cdot)\) \(\chi_{7800}(4081,\cdot)\) \(\chi_{7800}(5641,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.56654815673828125.1

Values on generators

\((1951,3901,5201,7177,4201)\) → \((1,1,1,e\left(\frac{4}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7800 }(961, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7800 }(961,a) \;\) at \(\;a = \) e.g. 2