Properties

Label 784.165
Modulus 784784
Conductor 112112
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,8]))
 
pari: [g,chi] = znchar(Mod(165,784))
 

Basic properties

Modulus: 784784
Conductor: 112112
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ112(53,)\chi_{112}(53,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 784.x

χ784(165,)\chi_{784}(165,\cdot) χ784(373,)\chi_{784}(373,\cdot) χ784(557,)\chi_{784}(557,\cdot) χ784(765,)\chi_{784}(765,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.49519263525896192.1

Values on generators

(687,197,689)(687,197,689)(1,i,e(23))(1,i,e\left(\frac{2}{3}\right))

First values

aa 1-1113355991111131315151717191923232525
χ784(165,a) \chi_{ 784 }(165, a) 1111e(512)e\left(\frac{5}{12}\right)e(712)e\left(\frac{7}{12}\right)e(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)i-i11e(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ784(165,a)   \chi_{ 784 }(165,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ784(165,))   \tau_{ a }( \chi_{ 784 }(165,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ784(165,),χ784(n,))   J(\chi_{ 784 }(165,·),\chi_{ 784 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ784(165,))  K(a,b,\chi_{ 784 }(165,·)) \; at   a,b=\; a,b = e.g. 1,2