from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(784, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,5]))
pari: [g,chi] = znchar(Mod(439,784))
Basic properties
Modulus: | \(784\) | |
Conductor: | \(392\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{392}(243,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 784.bo
\(\chi_{784}(87,\cdot)\) \(\chi_{784}(103,\cdot)\) \(\chi_{784}(199,\cdot)\) \(\chi_{784}(311,\cdot)\) \(\chi_{784}(327,\cdot)\) \(\chi_{784}(439,\cdot)\) \(\chi_{784}(535,\cdot)\) \(\chi_{784}(551,\cdot)\) \(\chi_{784}(647,\cdot)\) \(\chi_{784}(663,\cdot)\) \(\chi_{784}(759,\cdot)\) \(\chi_{784}(775,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1 |
Values on generators
\((687,197,689)\) → \((-1,-1,e\left(\frac{5}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\( \chi_{ 784 }(439, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)