from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7840, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,42,21,50]))
chi.galois_orbit()
[g,chi] = znchar(Mod(17,7840))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(7840\) | |
Conductor: | \(1960\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(84\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1960.dm | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{84})$ |
Fixed field: | Number field defined by a degree 84 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{7840}(17,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(593,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(817,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(1137,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(1713,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(1937,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(2033,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(2257,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(2833,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(3153,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(3377,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(3953,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(4177,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(4273,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(4497,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(5073,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(5297,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(5393,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(6417,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(6513,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(6737,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{7840}(7313,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(7537,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{7840}(7633,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |